题目内容

(本题满分15分) 设函数的定义域为,当时,,且对于任意的实数,都有.(1)求;(2)试判断函数上是否存在最小值,若存在,求该最小值;若不存在,说明理由;(3)设数列各项都是正数,且满足 (),又设, 当时,试比较的大小,并说明理由.

(Ⅰ)    (Ⅱ)   (Ⅲ)


解析:

(1)令,,又      

(2)∵时,时,

故对于任取实数,且,则

上为增函数

上存在最小值,;   

(3)由

,又上为增函数∴

,又数列各项都是正数∴

∴数列为等差数列,

,∴

时,

  ∴综上,)          

练习册系列答案
相关题目

((本题满分15分)
某有奖销售将商品的售价提高120元后允许顾客有3次抽奖的机会,每次抽奖的方法是在已经设置并打开了程序的电脑上按“Enter”键,电脑将随机产生一个                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        1~6的整数数作为号码,若该号码是3的倍数则顾客获奖,每次中奖的奖金为100元,运用所学的知识说明这样的活动对商家是否有利。

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网