题目内容
1.函数f(x)=ax2+c(a≠0),若${∫}_{0}^{1}$f(x)dx=f(x0),其中-1<x0<0,则x0等于-$\frac{\sqrt{3}}{3}$.分析 先根据积分的计算法则求出$\frac{1}{3}$a+c=f(x0)=ax02+c,继而得到x02=$\frac{1}{3}$,解得即可.
解答 解:${∫}_{0}^{1}$f(x)dx=${∫}_{0}^{1}$(ax2+c)dx=($\frac{a}{3}$x3+cx)|${\;}_{0}^{1}$=$\frac{1}{3}$a+c=f(x0)=ax02+c,
∵a≠0,
∴x02=$\frac{1}{3}$,
∵-1<x0<0,
∴x0=-$\frac{\sqrt{3}}{3}$,
故答案为:-$\frac{\sqrt{3}}{3}$.
点评 本题考查了定积分的计算和函数值的求法,以及方程的解法,属于基础题.
练习册系列答案
相关题目
11.函数y=$\frac{1}{3}$x3-x2+5在x=1处的切线倾斜角为( )
A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{3π}{4}$ |
9.某机构为了研究人的脚的大小与身高之间的关系,随机测量了20人,得到如下数据
(1)若“身高大于175厘米”的为“高个”,“身高小于等于175厘米”的为“非高个”;“脚长大于42码”的为“大脚”,“脚长小于等于42码”的为“非大脚”,请根据上表数据完成下面的2×2列联表.
(2)根据(1)中的2×2列联表,试运用独立性检验的思想方法:能否在犯错误的概率不超过0.01的前提下认为脚的大小与身高之间有关系.
参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
参考数据:
身高(厘米) | 192 | 164 | 172 | 177 | 176 | 159 | 171 | 166 | 182 | 166 |
脚长(码) | 48 | 38 | 40 | 43 | 44 | 37 | 40 | 39 | 46 | 39 |
身高(厘米) | 169 | 178 | 167 | 174 | 168 | 179 | 165 | 170 | 162 | 170 |
脚长(码) | 43 | 41 | 40 | 43 | 40 | 44 | 38 | 42 | 39 | 41 |
(2)根据(1)中的2×2列联表,试运用独立性检验的思想方法:能否在犯错误的概率不超过0.01的前提下认为脚的大小与身高之间有关系.
高个 | 非高个 | 合计 | |
大脚 | |||
非大脚 | 12 | ||
合计 | 20 |
参考数据:
P(k2>k) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.84 | 5.024 | 6.635 | 7.879 | 10.83 |
16.为了解某校高三学生质检数学成绩分布,从该校参加质检的学生数学成绩中抽取一个样本,并分成5组,绘成如图所示的频率分布直方图.若第一组至第五组数据的频率之比为1:2:8:6:3,最后一组数据的频数是6.用频率估计概率的方法,估计该校高三学生质检数学成绩在125~140分之间的概率和样本容量为( )
A. | $\frac{1}{10}$,60 | B. | $\frac{2}{5}$,15 | C. | $\frac{3}{10}$,20 | D. | $\frac{3}{20}$,40 |