题目内容
【题目】不等式组 的解集记为D,命题p:(x,y)∈D,x+2y≥5,命题q:(x,y)∈D,2x﹣y<2,则下列命题为真命题的是( )
A.p
B.q
C.p∨(q)
D.(p)∨q
【答案】C
【解析】解:作出不等式组对应的平面区域如图: 作出直线x+2y=5,则阴影部分都在直线x+2y=5的上方,即:(x,y)∈D,x+2y≥5成立,
故命题p是真命题,
作出直线2x﹣y=2,则阴影部分除点A外都在直线2x﹣y=2的下方,即命题q:(x,y)∈D,2x﹣y<2,不成立,
故命题q假命题,
故p∨(q)为真命题,其余为假命题,
故选:C
【考点精析】解答此题的关键在于理解复合命题的真假的相关知识,掌握“或”、 “且”、 “非”的真值判断:“非p”形式复合命题的真假与F的真假相反;“p且q”形式复合命题当P与q同为真时为真,其他情况时为假;“p或q”形式复合命题当p与q同为假时为假,其他情况时为真.
【题目】为了调查某中学学生在周日上网的时间,随机对名男生和名女生进行了不记名的问卷调查,得到了如下的统计结果:
表1:男、女生上网时间与频数分布表
上网时间(分钟) | [30,40) | [40,50) | [50,60) | [60,70) | [70,80] |
男生人数 | 5 | 25 | 30 | 25 | 15 |
女生人数 | 10 | 20 | 40 | 20 | 10 |
(Ⅰ)若该中学共有女生750人,试估计其中上网时间不少于60分钟的人数;
(Ⅱ)完成下表,并回答能否有90%的把握认为“学生周日上网时间与性别有关”?
上网时间少于60分钟 | 上网时间不少于60分钟 | 合计 | |
男生 | |||
女生 | |||
合计 |
附:公式,其中
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.84 | 5.024 | 6.635 | 7.879 | 10.83 |
【题目】为利于分层教学,某学校根据学生的情况分成了A,B,C三类,经过一段时间的学习后在三类学生中分别随机抽取了1个学生的5次考试成缎,其统计表如下:
A类
第x次 | 1 | 2 | 3 | 4 | 4 |
分数y(满足150) | 145 | 83 | 95 | 72 | 110 |
,;
B类
第x次 | 1 | 2 | 3 | 4 | 4 |
分数y(满足150) | 85 | 93 | 90 | 76 | 101 |
,;
C类
第x次 | 1 | 2 | 3 | 4 | 4 |
分数y(满足150) | 85 | 92 | 101 | 100 | 112 |
,;
(1)经计算己知A,B的相关系数分别为,.,请计算出C学生的的相关系数,并通过数据的分析回答抽到的哪类学生学习成绩最稳定;(结果保留两位有效数字,越大认为成绩越稳定)
(2)利用(1)中成绩最稳定的学生的样本数据,已知线性回归直线方程为,利用线性回归直线方程预测该生第十次的成绩.
附相关系数,线性回归直线方程,,.