题目内容
【题目】已知数列满足.
(1)求数列的通项公式;
(2)对任意给定的,是否存在()使成等差数列?若存
在,用分别表示和(只要写出一组);若不存在,请说明理由;
(3)证明:存在无穷多个三边成等比数列且互不相似的三角形,其边长为.
【答案】(1); (2)当时,不存在p,r;当时,存在满足题设;(3)证明见解析.
【解析】
(1)由可求出数列的通项公式;(2)分和两种情况讨论,根据题中条件求出,,的大小关系,再设,即可用表示和;(3)构造三角形三边分别为,,,然后用反证法证明任意两个三角形互不相似,本题得证
(1)当时,;
当时,,
所以;
综上所述,.
(2)当时,若存在p,r使成等差数列,则,
因为,所以,与数列为正数相矛盾,因此,当时不存在;
当时,设,则,所以,
令,得,此时,,
所以,,
所以;
综上所述,当时,不存在p,r;当时,存在满足题设.
(3)作如下构造:,其中,
它们依次为数列中的第项,第项,第项,
显然它们成等比数列,且,,所以它们能组成三角形.
由的任意性,这样的三角形有无穷多个.
下面用反证法证明其中任意两个三角形和不相似:
若三角形和相似,且,则,
整理得,所以,这与条件相矛盾,
因此,任意两个三角形不相似.故命题成立.
【题目】假设某种设备使用的年限(年)与所支出的维修费用(万元)有以下统计资料:
使用年限 | 2 | 3 | 4 | 5 | 6 |
维修费用 | 2 | 4 | 5 | 6 | 7 |
若由资料知对呈线性相关关系.试求:
(1)求;
(2)线性回归方程;
(3)估计使用10年时,维修费用是多少?
附:利用“最小二乘法”计算的值时,可根据以下公式:
【题目】2019年6月13日,三届奥运亚军,羽坛传奇,马来西亚名将李宗伟宣布退役,当天有大量网友关注此事件,某网上论坛从关注此事件跟帖中,随机抽取了100名网友进行调查统计,先分别统计他们在跟帖中的留言条数,再把网友人数按留言条数分成6组;,得到如下图所小的频率分布直方图;并将其中留言不低于40条的规定为“强烈关注”,否则为“一般关注”,对这100名网友进一步统计,得到部分数据如下的列联表.
(1)在答题卡上补全2×2列联表中数据,并判断能否有95%的把握认为网友对此事件是否为“强烈关注”与性别有关?
(2)该论坛欲在上述“强烈关注”的网友中按性别进行分层抽样,共抽取5人,并在此5人中随机抽取两名接受访谈,记女性访谈者的人数为占,求5的分布列与数学期望.
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
参考公式与数据:,其中.