题目内容

【题目】已知数列{an}中,a3=5,a5+a6=20,且2 ,2 ,2 成等比数列,数列{bn}满足bn=an﹣(﹣1)nn.
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)设sn是数列{bn}前n项和,求sn

【答案】解:(I)∵2 ,2 ,2 成等比数列,∴ =2 2 ,∴2an+1=an+an+2 . ∴数列{an}为等差数列,设公差为d,∵a3=5,a5+a6=20,
∴a1+2d=5,2a1+9d=20,
解得a1=1,d=2.
∴an=1+2(n﹣1)=2n﹣1.
∴bn=an﹣(﹣1)nn=(2n﹣1)﹣(﹣1)nn.
(II)设数列{﹣(﹣1)nn}的前n项和为Tn
则Tn=﹣1+2﹣3+…+(﹣1)nn.
∴﹣Tn=1﹣2+3+…+(﹣1)n(n﹣1)+(﹣1)n+1n,
∴2Tn=﹣1+1﹣1+…+(﹣1)n﹣(﹣1)n+1n= ﹣(﹣1)n+1n,
∴Tn= +
∴Sn= =n2﹣n﹣
【解析】(I)由2 ,2 ,2 成等比数列,可得 =2 2 ,可得2an+1=an+an+2 . 利用等差数列的通项公式可得an , 进而得出bn . (II)利用“错位相减法”、等差数列等比数列的求和公式即可得出.
【考点精析】掌握等比数列的通项公式(及其变式)和数列的前n项和是解答本题的根本,需要知道通项公式:;数列{an}的前n项和sn与通项an的关系

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网