题目内容
【题目】已知过抛物线y2=2px(p>0)的焦点F的直线与抛物线交于A,B两点,且3,抛物线的准线l与x轴交与点C,AA1垂直l于点A1,若四边形AA1CF的面积为,则准线l的方程为( )
A.B.C.x=﹣2D.x=﹣1
【答案】D
【解析】
由题意得过焦点的直线的斜率存在且不为零,设直线方程,联立直线与抛物线的方程,由根与系数的关系及向量的关系得到 点的坐标,代入抛物线方程可得参数的关系,由四边形的时梯形求出面积即可求出参数的值,进而求出准线方程.
解:由题意得抛物线的准线方程:,焦点坐标,,设,,,,,,,,,
直线的斜率存在且不为零,设,代入抛物线方程:整理得:,
,而,,,点在抛物线上可得:,
,四边形的面积为,而四边形是直角梯形,
所以面积为:,
而,,,
,所以准线方程:.
故选:.
【题目】“有黑扫黑、无黑除恶、无恶治乱”,维护社会稳定和和平发展.扫黑除恶期间,大量违法分子主动投案,某市公安机关对某月连续7天主动投案的人员进行了统计,表示第天主动投案的人数,得到统计表格如下:
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
3 | 4 | 5 | 5 | 5 | 6 | 7 |
(1)若与具有线性相关关系,请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;
(2)判定变量与之间是正相关还是负相关.(写出正确答案,不用说明理由)
(3)预测第八天的主动投案的人数(按四舍五入取到整数).
参考公式:, ./span>
【题目】已知抛物线C:y2=2px(p>0)与圆无公共点,过抛物线C上一点M作圆D的两条切线,切点分别为E,F,当点M在抛物线C上运动时,直线EF都不通过的点构成一个区域,求这个区域的面积的取值范围.
【题目】为研究男、女生的身高差异,现随机从高二某班选出男生、女生各10人,并测量他们的身高,测量结果如下(单位:厘米):
男:164 178 174 185 170 158 163 165 161 170
女:165 168 156 170 163 162 158 153 169 172
(1)根据测量结果完成身高的茎叶图(单位:厘米),并分别求出男、女生身高的平均值.
(2)请根据测量结果得到20名学生身高的中位数(单位:厘米),将男、女生身高不低于和低于的人数填入下表中,并判断是否有的把握认为男、女生身高有差异?
人数 | 男生 | 女生 |
身高 | ||
身高 |
参照公式:
| 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(3)若男生身高低于165厘米为偏矮,不低于165厘米且低于175厘米为正常,不低于175厘米为偏高.假设可以用测量结果的频率代替概率,试求从高二的男生中任意选出2人,恰有1人身高属于正常的概率.