题目内容

(本题满分15分)

已知,且为自然对数的底数)。

(1)求的关系;

(2)若在其定义域内为增函数,求的取值范围;

(3)证明:

(提示:需要时可利用恒等式:)

 

【答案】

解:(1)由题意

   (2)由(1)知:(x>0)

h(x)=x2-2x+.要使g(x)在(0,+∞)为增函数,只需h(x)在(0,+∞)满足:

h(x)≥0恒成立.

x2-2x+≥0

上恒成立[来源:ZXXK][来源:学,科,网Z,X,X,K]

所以

   (3)证明:证:lnxx+1≤0  (x>0),

.

x∈(0,1)时,k′(x)>0,∴k(x)为单调递增函数;

x∈(1,∞)时,k′(x)<0,∴k(x)为单调递减函数;

x=1为k(x)的极大值点,

∴k(x)≤k(1)=0.

即lnxx+1≤0,∴lnxx-1.

②由①知lnxx-1,又x>0,

【解析】略

 

练习册系列答案
相关题目

((本题满分15分)
某有奖销售将商品的售价提高120元后允许顾客有3次抽奖的机会,每次抽奖的方法是在已经设置并打开了程序的电脑上按“Enter”键,电脑将随机产生一个                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        1~6的整数数作为号码,若该号码是3的倍数则顾客获奖,每次中奖的奖金为100元,运用所学的知识说明这样的活动对商家是否有利。

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网