题目内容
【题目】如图,四棱锥P﹣ABCD中,ABCD为矩形,平面PAD⊥平面ABCD.
(1)求证:AB⊥PD;
(2)若∠BPC=90°,PB= ,PC=2,问AB为何值时,四棱锥P﹣ABCD的体积最大?并求此时平面BPC与平面DPC夹角的余弦值.
【答案】
(1)证明:∵在四棱锥P﹣ABCD中,ABCD为矩形,∴AB⊥AD,
又∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,
∴AB⊥面PAD,∴AB⊥PD
(2)解:过P做PO⊥AD,∴PO⊥平面ABCD,
作OM⊥BC,连接PM
∴PM⊥BC,
∵∠BPC=90°,PB= ,PC=2,
∴BC= ,PM= = = ,BM= = ,
设AB=x,∴OM=x∴PO= ,
∴VP﹣ABCD= ×x× × = = ,
当 ,即x= ,VP﹣ABCD= ,
建立空间直角坐标系O﹣AMP,如图所示,
则P(0,0, ),D(﹣ ,0,0),C(﹣ , ,0),M(0, ,0),B( , ,0)
面PBC的法向量为 =(0,1,1),面DPC的法向量为 =(1,0,﹣2)
∴cosθ= =﹣ =﹣ .由图可知二面角为锐角,即cos
【解析】(1)要证AD⊥PD,可以证明AB⊥面PAD,再利用面面垂直以及线面垂直的性质,即可证明AB⊥PD.(2)过P做PO⊥AD得到PO⊥平面ABCD,作OM⊥BC,连接PM,由边长关系得到BC= ,PM= ,设AB=x,则VP﹣ABCD= ,故当 时,VP﹣ABCD取最大值,建立空间直角坐标系O﹣AMP,利用向量方法即可得到夹角的余弦值.
【题目】某校高三年级共有学生名,为了解学生某次月考的情况,抽取了部分学生的成绩(得分均为整数,满分为分)进行统计,绘制出如下尚未完成的频率分布表:
分组 | 频数 | 频率 |
(1)补充完整题中的频率分布表;
(2)若成绩在为优秀,估计该校高三年级学生在这次月考中,成绩优秀的学生约为多少人.
【题目】教材上一例问题如下:
一只红铃虫的产卵数y和温度x有关,现收集了7组观测数据如下表,试建立y与x之间的回归方程.
温度 x/℃ | 21 | 23 | 25 | 27 | 29 | 32 | 35 |
产卵数y/个 | 7 | 11 | 21 | 24 | 66 | 115 | 325 |
某同学利用图形计算器研究它时,先作出散点图(如图所示),发现两个变量不呈线性相关关系. 根据已有的函数知识,发现样本点分布在某一条指数型曲线的附近(和是待定的参数),于是进行了如下的计算:
根据以上计算结果,可以得到红铃虫的产卵数y对温度x的回归方程为__________.(精确到0.0001) (提示:利用代换可转化为线性关系)