题目内容

在△ABC中,若acosA=bcosB,判断△ABC的形状.

解:∵cosA=,cosB=
•a=•b,
化简得:a2c2-a4=b2c2-b4,即(a2-b2)c2=(a2-b2)(a2+b2),
①若a2-b2=0时,a=b,此时△ABC是等腰三角形;
②若a2-b2≠0,a2+b2=c2,此时△ABC是直角三角形,
所以△ABC是等腰三角形或直角三角形.
分析:把由余弦定理解出的余弦表达式代入已知的等式化简可得:(a2-b2)c2=(a2-b2)(a2+b2),
分①a2-b2=0和②a2-b2≠0两种情况讨论.
点评:本题考查余弦定理的应用,体现了分类讨论的数学思想.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网