题目内容
【题目】已知各项均为正数的数列的前项和为,满足,,,,恰为等比数列的前3项.
(1)求数列,的通项公式;
(2)求数列的前项和为;若对均满足,求整数的最大值;
(3)是否存在数列满足等式成立,若存在,求出数列的通项公式;若不存在,请说明理由.
【答案】(1),(2),的最大整数是673.(3)存在,
【解析】
(1)由可得(),然后把这两个等式相减,化简得,公差为1,因为,,为等比数列,所以,化简计算得,,从而得到数列的通项公式,再计算出 ,,,从而可求出数列的通项公式;
(2)令,化简计算得,从而可得数列是递增的,所以只要的最小值大于即可,而的最小值为,所以可得答案;
(3)由题意可知,,
即,这个可看成一个数列的前项和,再写出其前()项和,两式相减得,,利用同样的方法可得.
解:(1)由题,当时,,即
当时, ① ②
①-②得,整理得,又因为各项均为正数的数列.
故是从第二项的等差数列,公差为1.
又恰为等比数列的前3项,
故,解得.又,
故,因为也成立.
故是以为首项,1为公差的等差数列.故
即2,4,8恰为等比数列的前3项,故是以为首项,公比为的等比数列,
故.综上,
(2)令,则
所以数列是递增的,
若对均满足,只要的最小值大于即可
因为的最小值为,
所以,所以的最大整数是673.
(3)由,得
,
③
④
③-④得, ⑤,
⑥
⑤-⑥得,,
所以存在这样的数列,
【题目】随着中美贸易战的不断升级,越来越多的国内科技巨头加大了科技研发投入的力度.中华技术有限公司拟对“麒麟”手机芯片进行科技升级,根据市场调研与模拟,得到科技升级投入x(亿元与科技升级直接收益y(亿元)的数据统计如下:
序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
x | 2 | 3 | 4 | 6 | 8 | 10 | 13 | 21 | 22 | 23 | 24 | 25 |
y | 13 | 22 | 31 | 42 | 50 | 56 | 58 | 68.5 | 68 | 67.5 | 66 | 66 |
当时,建立了y与x的两个回归模型:模型①:;模型②:;当时,确定y与x满足的线性回归方程为.
(1)根据下列表格中的数据,比较当时模型①、②的相关指数的大小,并选择拟合精度更高、更可靠的模型,预测对“麒麟”手机芯片科技升级的投入为17亿元时的直接收益.
回归模型 | 模型① | 模型② |
回归方程 | ||
182.4 | 79.2 |
(附:刻画回归效果的相关指数,)
(2)为鼓励科技创新,当科技升级的投入不少于20亿元时,国家给予公司补贴5亿元,以回归方程为预测依据,比较科技升级投入17亿元与20亿元时公司实际收益的大小.
(附:用最小二乘法求线性回归方程的系数:,)
(3)科技升级后,“麒麟”芯片的效率X大幅提高,经实际试验得X大致服从正态分布.公司对科技升级团队的奖励方案如下:若芯片的效率不超过50%,不予奖励:若芯片的效率超过50%,但不超过53%,每部芯片奖励2元;若芯片的效率超过53%,每部芯片奖励4元记为每部芯片获得的奖励,求(精确到0.01).
(附:若随机变量,则,)
【题目】自从高中生通过高校自主招生可获得加分进入高校的政策出台后,自主招生越来越受到高中生家长的重视.某机构为了调查城市和城市的高中家长对于自主招生的关注程度,在这两个城市中抽取了名高中生家长进行了调查,得到下表:
关注 | 不关注 | 合计 | |
城高中家长 | 20 | 50 | |
城高中家长 | 20 | ||
合计 | 100 |
(1)完成上面的列联表;
(2)根据上面列联表的数据,是否有的把握认为家长对自主招生关注与否与所处城市有关;
(3)为了进一步研究家长对自主招生的直法,该机构从关注的学生家长里面,按照分层抽样方法抽取了人,并再从这人里面抽取人进行采访,求所抽取的人恰好两城市各一人的概率.
附:(其中).
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |