题目内容

已知函数f(x)=x3-x
(1)求曲线y=f(x)在点M(t,f(t))处的切线方程
(2)设a>0,如果过点(a,b)可作曲线y=f(x)的三条切线,证明:-a<b<f(a)
(1)求函数f(x)的导函数;f'(x)=3x2-1.
曲线y=f(x)在点M(t,f(t))处的切线方程为:y-f(t)=f'(t)(x-t),即y=(3t2-1)x-2t3
(2)如果有一条切线过点(a,b),则存在t,使b=(3t2-1)a-2t3
于是,若过点(a,b)可作曲线y=f(x)的三条切线,则方程2t3-3at2+a+b=0有三个相异的实数根.
记g(t)=2t3-3at2+a+b,则g'(t)=6t2-6at=6t(t-a).
当t变化时,g(t),g'(t)变化情况如下表:

由g(t)的单调性,当极大值a+b<0或极小值b-f(a)>0时,方程g(t)=0最多有一个实数根;
当a+b=0时,解方程g(t)=0得t=0,t=
3a
2
,即方程g(t)=0只有两个相异的实数根;
当b-f(a)=0时,解方程g(t)=0得t=-
a
2
,t=a
,即方程g(t)=0只有两个相异的实数根.
综上,如果过(a,b)可作曲线y=f(x)三条切线,即g(t)=0有三个相异的实数根,则
a+b>0
b-f(a)<0.

即-a<b<f(a).
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网