题目内容
【题目】在极坐标系中,已知点到直线的距离为3.
(1)求实数的值;
(2)设是直线上的动点,在线段上,且满足,求点轨迹方程,并指出轨迹是什么图形.
【答案】(1);(2),点的轨迹是以为圆心,为半径的圆(除去原点)
【解析】
(1)把化成直角坐标方程为,再根据点到直线的距离公式即可算出.
(2)首先根据由直线极坐标方程,设,找出两点之间的关系,把点代入直线方程即可.
(1)以极点为原点,极轴为轴的正半轴,建立直角坐标系,则点的直角坐标为,直线的直角坐标方程为,
由点到直线的距离为.
(2)由(1)得直线的方程为,
设,则,①
因为点在直线上,所以,②
将①代入②,得.
则点的轨迹方程为,
化为直角坐标方程为,
则点的轨迹是以为圆心,为半径的圆(除去原点)
【题目】“难度系数”反映试题的难易程度,难度系数越大,题目得分率越高,难度也就越小.“难度系数”的计算公式为,其中,为难度系数,为样本平均失分,为试卷总分(一般为100分或150分).某校高三年级的李老师命制了某专题共5套测试卷(每套总分150分),用于对该校高三年级480名学生进行每周测试.测试前根据自己对学生的了解,预估了每套试卷的难度系数,如下表所示:
试卷序号 | 1 | 2 | 3 | 4 | 5 |
考前预估难度系数 | 0.7 | 0.64 | 0.6 | 0.6 | 0.55 |
测试后,随机抽取了50名学生的数据进行统计,结果如下:
试卷序号 | 1 | 2 | 3 | 4 | 5 |
实测平均分 | 102 | 99 | 93 | 93 | 87 |
(1)根据试卷2的难度系数估计这480名学生第2套试卷的平均分;
(2)从抽样的50名学生的5套试卷中随机抽取2套试卷,记这2套试卷中平均分超过96分的套数为,求的分布列和数学期望;
(3)试卷的预估难度系数和实测难度系数之间会有偏差.设为第套试卷的实测难度系数,并定义统计量,若,则认为本专题的5套试卷测试的难度系数预估合理,否则认为不合理.试检验本专题的5套试卷对难度系数的预估是否合理.
【题目】下表是某原料在市场上从2013年至2019年这7年中每年的平均价格(单位:千元/吨)数据:
年份 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
年份代号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
平均价格 (单位:千元/吨) |
(
(2)以(1)的结论为依据,预测2032年该原料价格.预估该原料价格在哪一年突破1万元/吨?
参考数据:,,,
参考公式:回归方程中斜率和截距的最小二乘估计公式分别为:,.