题目内容

【题目】如图所示,在四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC上,PC⊥平面BDE.

(1)证明:BD⊥平面PAC;
(2)若PA=1,AD=2,求二面角B﹣PC﹣A的正切值.

【答案】
(1)解:∵PA⊥平面ABCD

∴PA⊥BD

∵PC⊥平面BDE

∴PC⊥BD,又PA∩PC=P

∴BD⊥平面PAC


(2)解:设AC与BD交点为O,连OE

∵PC⊥平面BDE

∴PC⊥平面BOE

∴PC⊥BE

∴∠BEO为二面角B﹣PC﹣A的平面角

∵BD⊥平面PAC

∴BD⊥AC

∴四边形ABCD为正方形,又PA=1,AD=2,可得BD=AC=2 ,PC=3

∴OC=

在△PAC∽△OEC中,

又BD⊥OE,

∴二面角B﹣PC﹣A的平面角的正切值为3


【解析】(1)由题设条件及图知,可先由线面垂直的性质证出PA⊥BD与PC⊥BD,再由线面垂直的判定定理证明线面垂直即可;(2)由图可令AC与BD的交点为O,连接OE,证明出∠BEO为二面角B﹣PC﹣A的平面角,然后在其所在的三角形中解三角形即可求出二面角的正切值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网