题目内容
【题目】已知函数.
当时,恒成立,求的值;
若恒成立,求的最小值.
【答案】(1);(2).
【解析】
(1)求出函数的导数,通过讨论a的范围,求出函数的单调区间,求出函数的最大值,从而求出a的值即可;
(2)把f(x)≤0恒成立,转化为lnx≤ax+b恒成立,当a≤0时显然不满足题意;当a>0时,要使lnx≤ax+b对任意x>0恒成立,需要直线y=ax+b与曲线y=lnx相切,设出切点坐标,把a,b用切点横坐标表示,得到a+blnx0﹣1(x0>0),构造函数g(x)lnx﹣1,利用导数求其最小值得答案.
解:(1)由,得,则.
∴.
若,则,在上递增.
又,∴.当时,不符合题意.
② 若,则当时,,递增;当时,,递减.
∴当时,.
欲使恒成立,则需
记,则.
∴当时,,递减;当时,,递增.
∴当时,
综上所述,满足题意的.
(2)由(1)知,欲使恒成立,则.
而恒成立恒成立函数的图象不在函数图象的上方,
又需使得的值最小,则需使直线与曲线的图象相切.
设切点为,则切线方程为,即..
∴ .
令,则.
∴当时,,递减;当时,,递增.
∴.
故的最小值为0.
【题目】近期,某学校举行了一次体育知识竞赛,并对竞赛成绩进行分组:成绩不低于80分的学生为甲组,成绩低于80分的学生为乙组.为了分析竞赛成绩与性别是否有关,现随机抽取了60名学生的成绩进行分析,数据如下图所示的列联表.
甲组 | 乙组 | 合计 | |
男生 | 3 | ||
女生 | 13 | ||
合计 | 40 | 60 |
(1)将列联表补充完整,判断是否有的把握认为学生按成绩分组与性别有关?
(2)如果用分层抽样的方法从甲组和乙组中抽取6人,再从这6人中随机抽取2人,求至少有1人在甲组的概率.
附:,.
参考数据及公式:
0.100 | 0.050 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
【题目】随着我国经济的发展,居民收入逐年增长.某地区2014年至2018年农村居民家庭人均纯收入(单位:千元)的数据如下表:
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
年份代号 | 1 | 2 | 3 | 4 | 5 |
人均纯收入 | 5 | 6 | 7 | 8 | 10 |
(1)求关于的线性回归方程;
(2)利用(1)中的回归方程,分析2014年至2018年该地区农村居民家庭人均纯收入的变化情况,并预测2020年该地区农村居民家庭人均纯收入约为多少千元?
附:回归直线的斜率和截距的最小二乘估计公式分别为,.