题目内容
【题目】某几何体的三视图如图所示,当xy取得最大值时,该几何体的体积是________.
【答案】3
【解析】由题意可知,该几何体为如图所示的四棱锥PABCD,CD=,AB=y,AC=5,CP=,BP=x,
∴BP2=BC2+CP2,
即x2=25-y2+7,x2+y2=32≥2xy,
则xy≤16,当且仅当x=y=4时,等号成立.
此时该几何体的体积V==3
点睛:空间几何体体积问题的常见类型及解题策略
(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解.
(2)若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解.
(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.
练习册系列答案
相关题目
【题目】在某批次的某种灯泡中,随机地抽取个样品,并对其寿命进行追踪调查,将结果列成频率分布表如下.根据寿命将灯泡分成优等品、正品和次品三个等级,其中寿命大于或等于天的灯泡是优等品,寿命小于天的灯泡是次品,其余的灯泡是正品.
寿命(天) | 频数 | 频率 |
合计 |
(Ⅰ)根据频率分布表中的数据,写出, 的值.
(Ⅱ)某人从灯泡样品中随机地购买了个,求个灯泡中恰有一个是优等品的概率.
(Ⅲ)某人从这个批次的灯泡中随机地购买了个进行使用,若以上述频率作为概率,用表示此人所购买的灯泡中次品的个数,求的分布列和数学期望.