题目内容
【题目】已知抛物线 和点D(2,0),直线 与抛物线C交于不同两点A、B,直线BD与抛物线C交于另一点E.给出以下判断:
①直线OB与直线OE的斜率乘积为-2; ②轴; ③以BE为直径的圆与抛物线准线相切;
其中,所有正确判断的序号是( )
A.①②③B.①②C.①③D.②③
【答案】B
【解析】
由题意,可设直线的方程为,利用韦达定理判断第一个结论;将代入抛物线的方程可得,,从而,,进而判断第二个结论;设为抛物线的焦点,以线段为直径的圆为,则圆心为线段的中点.设,到准线的距离分别为,,的半径为,点到准线的距离为,显然,,三点不共线,进而判断第三个结论.
解:由题意,可设直线的方程为,
代入抛物线的方程,有.
设点,的坐标分别为,,
则,.
所.
则直线与直线的斜率乘积为.所以①正确.
将代入抛物线的方程可得,,从而,,
根据抛物线的对称性可知,,两点关于轴对称,
所以直线轴.所以②正确.
如图,设为抛物线的焦点,以线段为直径的圆为,
则圆心为线段的中点.设,到准线的距离分别为,,的半径为,点到准线的距离为,显然,,三点不共线,
则.所以③不正确.
故选:B.
练习册系列答案
相关题目