题目内容

【题目】已知椭圆 ,直线 为参数).

(1)写出椭圆的参数方程及直线的普通方程;

(2),若椭圆上的点满足到点的距离与其到直线的距离相等,求点的坐标.

【答案】1;(2

【解析】

试题本题主要考查极坐标方程与直角坐标方程的转化、参数方程与普通方程的转化等基础知识,意在考查考生的分析问题解决问题的能力、转化能力、运算求解能力. 第一问,利用椭圆的参数方程,直接得到将直线的参数方程消参,得到直线的普通方程;第二问,由于P点在椭圆上,结合参数方程设出P点坐标,利用两点间的距离公式,及点到直线的距离公式,再相等,解出,从而得到P点坐标.

试题解析:(Cθ为参数),lxy904

)设,

P到直线l的距离

|AP|d3sinθ4cosθ5,又sin2θcos2θ1,得

10

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网