ÌâÄ¿ÄÚÈÝ
£¨2013•·îÏÍÇø¶þÄ££©¶¯Ô²C¹ý¶¨µã£¨1£¬0£©£¬ÇÒÓëÖ±Ïßx=-1ÏàÇУ®ÉèÔ²ÐÄCµÄ¹ì¼£¦£·½³ÌΪF£¨x£¬y£©=0
£¨1£©ÇóF£¨x£¬y£©=0£»
£¨2£©ÇúÏߦ£ÉÏÒ»¶¨µãP£¨1£¬2£©£¬·½ÏòÏòÁ¿
=(1£¬-1)µÄÖ±Ïßl£¨²»¹ýPµã£©ÓëÇúÏߦ£½»ÓëA¡¢BÁ½µã£¬ÉèÖ±ÏßPA¡¢PBбÂÊ·Ö±ðΪkPA£¬kPB£¬¼ÆËãkPA+kPB£»
£¨3£©ÇúÏߦ£ÉϵÄÒ»¸ö¶¨µãP0£¨x0£¬y0£©£¬¹ýµãP0×÷Çãб½Ç»¥²¹µÄÁ½ÌõÖ±ÏßP0M£¬P0N·Ö±ðÓëÇúÏߦ£½»ÓÚM£¬NÁ½µã£¬ÇóÖ¤Ö±ÏßMNµÄбÂÊΪ¶¨Öµ£®
£¨1£©ÇóF£¨x£¬y£©=0£»
£¨2£©ÇúÏߦ£ÉÏÒ»¶¨µãP£¨1£¬2£©£¬·½ÏòÏòÁ¿
d |
£¨3£©ÇúÏߦ£ÉϵÄÒ»¸ö¶¨µãP0£¨x0£¬y0£©£¬¹ýµãP0×÷Çãб½Ç»¥²¹µÄÁ½ÌõÖ±ÏßP0M£¬P0N·Ö±ðÓëÇúÏߦ£½»ÓÚM£¬NÁ½µã£¬ÇóÖ¤Ö±ÏßMNµÄбÂÊΪ¶¨Öµ£®
·ÖÎö£º£¨1£©¹ýµãC×÷Ö±Ïßx=-1µÄ´¹Ïߣ¬´¹×ãΪN£¬ÓÉÌâÒâÖª£º|CF|=|CN|£¬ÓÉÅ×ÎïÏߵĶ¨ÒåÖª£¬µãCµÄ¹ì¼£ÎªÅ×ÎïÏߣ®
£¨2£©Éè A£¨x1£¬y1£©¡¢B£¨x2£¬y2£©£¬ÓÉÌâµÃÖ±ÏßµÄбÂÊ-1£¬¹ý²»¹ýµãPµÄÖ±Ïß·½³ÌΪy=-x+b£¬´úÈëÅ×ÎïÏß·½³ÌµÃy2+4y-4b=0£¬ÀûÓøùÓëϵÊýµÄ¹Øϵ¼°Ð±Âʹ«Ê½£¬¼ÆËãkAP+kBP=
+
µÄÖµ£¬´Ó¶øµÃ³ö½áÂÛ£®
£¨3£©ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬¼ÆËã kMN=
µÄ½âÎöʽ£®ÉèMPµÄÖ±Ïß·½³ÌΪy-y0=k£¨x-x0£©£¬´úÈëÅ×ÎïÏß·½³ÌÀûÓøùÓëϵÊýµÄ¹ØϵÇóµÃ y1+y2µÄÖµ£¬´Ó¶øÇóµÃkMNµÄÖµ£¬´Ó¶øµÃ³ö½áÂÛ£®
£¨2£©Éè A£¨x1£¬y1£©¡¢B£¨x2£¬y2£©£¬ÓÉÌâµÃÖ±ÏßµÄбÂÊ-1£¬¹ý²»¹ýµãPµÄÖ±Ïß·½³ÌΪy=-x+b£¬´úÈëÅ×ÎïÏß·½³ÌµÃy2+4y-4b=0£¬ÀûÓøùÓëϵÊýµÄ¹Øϵ¼°Ð±Âʹ«Ê½£¬¼ÆËãkAP+kBP=
y1-2 |
x1-1 |
y2-2 |
x2-1 |
£¨3£©ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬¼ÆËã kMN=
y2-y1 |
x2-x1 |
½â´ð£º½â£º£¨1£©¹ýµãC×÷Ö±Ïßx=-1µÄ´¹Ïߣ¬´¹×ãΪN£¬ÓÉÌâÒâÖª£º|CF|=|CN|£¬
¼´¶¯µãCµ½¶¨µãFÓ붨ֱÏßx=-1µÄ¾àÀëÏàµÈ£¬ÓÉÅ×ÎïÏߵĶ¨ÒåÖª£¬µãCµÄ¹ì¼£ÎªÅ×ÎïÏߣ®
ÆäÖУ¨1£¬0£©Îª½¹µã£¬x=-1Ϊ׼Ïߣ¬ËùÒԹ켣·½³ÌΪy2=4x£®
£¨2£©Ö¤Ã÷£ºÉè A£¨x1£¬y1£©¡¢B£¨x2£¬y2£©£¬ÓÉÌâµÃÖ±ÏßµÄбÂÊ-1£®
¹ý²»¹ýµãPµÄÖ±Ïß·½³ÌΪy=-x+b£¬ÓÉ
µÃ y2+4y-4b=0£¬Ôòy1+y2=-4£®
ÓÉÓÚP£¨1£¬2£©£¬kAP+kBP=
+
=
+
=
+
=
=0£®
£¨3£©ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬Ôò kMN=
=
=
£¨***£©£®
ÉèMPµÄÖ±Ïß·½³ÌΪy-y0=k£¨x-x0£©£¬
ÓÉ
£¬¿ÉµÃy2-
y+
-4x0=0£¬
Ôòy0+y1=
£¬¡ày1=
-y0£®
ͬÀíy0+y2=-
£¬µÃy2=-
-y0£®
´úÈ루***£©¼ÆËãµÃ£ºy1+y2=-2y0 £¬¡àkMN=-
£¨Îª¶¨Öµ£©£®
¼´¶¯µãCµ½¶¨µãFÓ붨ֱÏßx=-1µÄ¾àÀëÏàµÈ£¬ÓÉÅ×ÎïÏߵĶ¨ÒåÖª£¬µãCµÄ¹ì¼£ÎªÅ×ÎïÏߣ®
ÆäÖУ¨1£¬0£©Îª½¹µã£¬x=-1Ϊ׼Ïߣ¬ËùÒԹ켣·½³ÌΪy2=4x£®
£¨2£©Ö¤Ã÷£ºÉè A£¨x1£¬y1£©¡¢B£¨x2£¬y2£©£¬ÓÉÌâµÃÖ±ÏßµÄбÂÊ-1£®
¹ý²»¹ýµãPµÄÖ±Ïß·½³ÌΪy=-x+b£¬ÓÉ
|
ÓÉÓÚP£¨1£¬2£©£¬kAP+kBP=
y1-2 |
x1-1 |
y2-20 |
x2-1 |
y1-2 | ||||
|
y2-2 | ||||
|
=
4 |
y1+2 |
4 |
y2+2 |
4(y1+y2+4) |
(y1+2)(y2+2) |
£¨3£©ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬Ôò kMN=
y2-y1 |
x2-x1 |
y2-y1 | ||||||||
|
4 |
y1+y2 |
ÉèMPµÄÖ±Ïß·½³ÌΪy-y0=k£¨x-x0£©£¬
ÓÉ
|
4 |
k |
4y0 |
k |
Ôòy0+y1=
4 |
k |
4 |
k |
ͬÀíy0+y2=-
2p |
k |
4 |
k |
´úÈ루***£©¼ÆËãµÃ£ºy1+y2=-2y0 £¬¡àkMN=-
2 |
y0 |
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÅ×ÎïÏߵĶ¨Ò壬ԲµÄ±ê×¼·½³Ì£¬Ò»Ôª¶þ´Î·½³Ì¸ùÓëϵÊýµÄ¹Øϵ£¬Ö±ÏßµÄбÂʹ«Ê½£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿