题目内容
【题目】
已知函数y=4cos2x-4sinxcosx-1(x∈R).
(1)求出函数的最小正周期;
(2)求出函数的最大值及其相对应的x值;
(3)求出函数的单调增区间;
(4)求出函数的对称轴.
【答案】(1)T=;(2)y最大值=5, x=kπ-(k∈Z);(3)-+kπ,-+kπ](k∈Z) ;(4)x=-(k∈Z)
【解析】
y=4cos2x-4sinxcosx-1=4×-4sinxcosx-1
=2cos2x-2sin2x+1=4(cos2x-sin2x)+1
=4cos(2x+)+1
(1)T=
(2)当cos(2x+)=1时,y最大值=5,此时2x+=2kπ,x=kπ-(k∈Z)
(3)令-π+2kπ≤2x+≤2kπ,得-+kπ≤x≤-+kπ,
∴函数的单调递增区间是[-+kπ,-+kπ](k∈Z)
(4)令2x+=kπ,得x=-
∴对称轴方程为x=-(k∈Z)
练习册系列答案
相关题目
【题目】某校团委对“学生性别与中学生追星是否有关”作了一次调查,利用列联表,由计算得,参照下表:
0.01 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
得到正确结论是( )
A. 有99%以上的把握认为“学生性别与中学生追星无关”
B. 有99%以上的把握认为“学生性别与中学生追星有关”
C. 在犯错误的概率不超过0.5%的前提下,认为“学生性别与中学生追星无关”
D. 在犯错误的概率不超过0.5%的前提下,认为“学生性别与中学生追星有关”