题目内容
设数列{an},{bn}满足:a1=4,a2=5 |
2 |
an+bn |
2 |
2anbn |
an+bn |
(1)用an表示an+1;并证明:?n∈N+,an>2;?
(2)证明:{ln
an+2 |
an-2 |
(3)设Sn是数列{an}的前n项和,当n≥2时,Sn与2(n+
4 |
3 |
分析:(1)根据题意可分别求得a1和a2,进而求得b1,整理把an+1=
代入bn+1=
整理得an+1bn+1=anbn═a1b1=4推断出bn=
代入an+1=
中求得an和an+1的递推式,根据均值不等式可知
+
>2,进而可知an+1>2进而推断出?n∈N+,an>2
(2)根据(1)中结论可求得an+1+2,an+1-2的表达式,进而可求得ln
=2ln
,判断出所以{ln
}是等比数列.
(3)由(2)可求得数列{ln
}的通项公式,进而求得an,设Cn=
,根据
<
Cn-1进而判断出
Cn<
Cn-1<(
)2Cn-2<…<(
)n-1C1=2(
)n-1可推断出an<2+2(
)n-1,进而利用等比数列的求和公式求得Sn=2n+2+
(1-
)<2n+
.
an+bn |
2 |
2anbn |
an+bn |
4 |
an |
an+bn |
2 |
an |
2 |
2 |
an |
(2)根据(1)中结论可求得an+1+2,an+1-2的表达式,进而可求得ln
an+1+2 |
an+1-2 |
an+2 |
an-2 |
an+2 |
an-2 |
(3)由(2)可求得数列{ln
an+2 |
an-2 |
4 |
32n-1 |
4 |
(32n-2)(32n-2) |
1 |
4 |
Cn<
1 |
4 |
1 |
4 |
1 |
4 |
1 |
4 |
1 |
4 |
2 |
3 |
1 |
4n-1 |
8 |
3 |
解答:解:(1)由已知得a1=4,a2=
,所以b1=1故an+1bn+1=anbn═a1b1=4;
由已知:an>0,a1>2,a2>2,bn=
∴an+1=
+
,
由均值不等式得an+1>2
故??n∈N+,an>2
(2)
=(
)2,an+1+2=
,
an+1-2=
所以ln
=2ln
,所以{ln
}是等比数列
(3)由(2)可知ln
=(ln3)×2n-1=ln32n-1∴an=
设Cn=
=
<
Cn-1,(n≥2)
?Cn<
Cn-1<(
)2Cn-2<<(
)n-1C1=2(
)n-1
∴当n≥2时,an<2+2(
)n-1
?Sn=a1+a2++an<4+2(n-1)+2[
+(
)2++(
)n-1]
=2n+2+2×
=2n+2+
(1-
)<2n+
.
5 |
2 |
由已知:an>0,a1>2,a2>2,bn=
4 |
an |
an |
2 |
2 |
an |
由均值不等式得an+1>2
故??n∈N+,an>2
(2)
an+1+2 |
an+1-2 |
an+2 |
an-2 |
(an+2)2 |
2an |
an+1-2=
(an-2)2 |
2an |
所以ln
an+1+2 |
an+1-2 |
an+2 |
an-2 |
an+2 |
an-2 |
(3)由(2)可知ln
an+2 |
an-2 |
32n-1+1 |
32n-1-1 |
设Cn=
4 |
32n-1 |
4 |
(32n-2)(32n-2) |
1 |
4 |
?Cn<
1 |
4 |
1 |
4 |
1 |
4 |
1 |
4 |
∴当n≥2时,an<2+2(
1 |
4 |
?Sn=a1+a2++an<4+2(n-1)+2[
1 |
4 |
1 |
4 |
1 |
4 |
=2n+2+2×
| ||||
1-
|
=2n+2+
2 |
3 |
1 |
4n-1 |
8 |
3 |
点评:本题主要考查了数列的递推式.考查了学生综合分析问题和基本的运算能力.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目