题目内容

【题目】已知函数满足,若函数图象的交点为,则交点的所有横坐标和纵坐标之和为( )

A. 0 B. C. D.

【答案】B

【解析】

由条件可得f(x)+f(﹣x)=2,即有f(x)关于点(0,1)对称,又函数y= ,即y=1+的图象关于点(0,1)对称,即有(x1,y1)为交点,即有(﹣x1,2﹣y1)也为交点,计算即可得到所求和.

函数f(x)(x∈R)满足f(﹣x)=2﹣f(x),

即为f(x)+f(﹣x)=2,

可得f(x)关于点(0,1)对称,

函数y=,即y=1+的图象关于点(0,1)对称,

即有(x1,y1)为交点,即有(﹣x1,2﹣y1)也为交点,

(x2,y2)为交点,即有(﹣x2,2﹣y2)也为交点,

则有=(x1+y1)+(x2+y2)+…+(xm+ym

=[(x1+y1)+(﹣x1+2﹣y1)+(x2+y2)+(﹣x2+2﹣y2)+…+(xm+ym)+(﹣xm+2﹣ym)]

=m.

故选:B.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网