题目内容

【题目】定义在[﹣1,1]上的奇函数f(x),已知当x∈[﹣1,0]时的解析式f(x)= (a∈R).
(1)写出f(x)在[0,1]上的解析式;
(2)求f(x)在[0,1]上的最大值.

【答案】
(1)解:∵函数f(x)是定义在[﹣1,1]上的奇函数,

又∵

=1﹣a=0

解得a=1

即当x∈[﹣1,0]时的解析式

当x∈[0,1]时,﹣x∈[﹣1,0]

=4x﹣2x=﹣f(x)

∴f(x)=2x﹣4x(x∈[0,1])


(2)解:由(1)得当x∈[0,1]时,f(x)=2x﹣4x

令t=2x(t∈[1,2])

则2x﹣4x=t﹣t2

令y=t﹣t2(t∈[1,2])

则易得当t=1时,y有最大值0

f(x)在[0,1]上的最大值为0


【解析】(1)由函数f(x)为定义在[﹣1,1]上的奇函数,其图象经过坐标原点,则根据x∈[﹣1,0]时的解析式 ,构造关于a的方程,再结合奇函数的性质,求出函数f(x)在[0,1]上的解析式.(2)根据(1)中函数的解析式,我们用换元法可将函数的解析式,转化为一个二次函数的形式,我们分析出函数的单调性,进而求出f(x)在[0,1]上的最大值.
【考点精析】掌握函数的最值及其几何意义和函数的奇函数是解答本题的根本,需要知道利用二次函数的性质(配方法)求函数的最大(小)值;利用图象求函数的最大(小)值;利用函数单调性的判断函数的最大(小)值;一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网