题目内容
【题目】某中学拟在高一下学期开设游泳选修课,为了了解高一学生喜欢游泳是否与性别有关,现从高一学生中抽取人做调查,得到列联表:
喜欢游泳 | 不喜欢游泳 | 合计 | |
男生 | 40 | ||
女生 | 30 | ||
合计 | 100 |
且已知在个人中随机抽取人,抽到喜欢游泳的学生的概率为.
(1)请完成上面的列联表;
(2)根据列联表的数据,是否有的把握认为喜欢游泳与性别有关?并说明你的理由.
【答案】(1)列联表见解析;(2)有把握,理由见解析.
【解析】
(1)根据喜欢游泳的学生的概率为,可计算出喜欢游泳的人数,进而可完善列联表.
(2)根据列联表算出观测值,由独立性检验的基本思想即可判断.
(1)因为在人中随机抽取人喜欢游泳的概率为.
所以喜欢游泳的人数为,所以列联表如下:
喜欢游泳 | 不喜欢游泳 | 合计 | |
男生 | 40 | 10 | 50 |
女生 | 20 | 30 | 50 |
合计 | 60 | 40 | 100 |
(2),所以有的把握认为“喜欢游泳与性别有关系”.
练习册系列答案
相关题目
【题目】某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如下表:
年 份 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 |
年份代号t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均纯收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(1)求y关于t的线性回归方程;
(2)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.
附:回归直线的斜率和截距的最小二乘估计公式分别为:
=,=-.