题目内容
若直线(2+m)x+(m-1)y+7=0与直线(1-m)x+(3m-2)y-13=0互相垂直,则m的值为( )
A.1 | B.2 | C.1或0 | D.1或2 |
由于直线(2+m)x+(m-1)y+7=0与直线(1-m)x+(3m-2)y-13=0,
不妨设A1=2+m,B1=m-1,A2=1-m,B2=3m-2,
∵直线(2+m)x+(m-1)y+7=0与直线(1-m)x+(3m-2)y-13=0互相垂直,
∴A1A2+B1B2=0,即(2+m)×(1-m)+(m-1)×(3m-2)=0,
解得:m=1或2.
∴使直线(2+m)x+(m-1)y+7=0与直线(1-m)x+(3m-2)y-13=0互相垂直的m的值为1或2.
故答案为:D.
不妨设A1=2+m,B1=m-1,A2=1-m,B2=3m-2,
∵直线(2+m)x+(m-1)y+7=0与直线(1-m)x+(3m-2)y-13=0互相垂直,
∴A1A2+B1B2=0,即(2+m)×(1-m)+(m-1)×(3m-2)=0,
解得:m=1或2.
∴使直线(2+m)x+(m-1)y+7=0与直线(1-m)x+(3m-2)y-13=0互相垂直的m的值为1或2.
故答案为:D.
练习册系列答案
相关题目