题目内容
14.已知数列{an}满足a1=0,an+1=an+2n,则a2016等于( )A. | 2016×2 017 | B. | 2015×2 016 | C. | 2014×2 015 | D. | 2016×2 016 |
分析 通过an+1=an+2n可知an-an-1=2(n-1),an-1-an-2=2(n-2),an-2-an-3=2(n-3),…,a2-a1=2,累加计算,进而可得结论.
解答 解:∵an+1=an+2n,
∴an+1-an=2n,
∴an-an-1=2(n-1),
an-1-an-2=2(n-2),
an-2-an-3=2(n-3),
…
a2-a1=2,
累加得:an-a1=2[1+2+3+…+(n-1)]=2•$\frac{n(n-1)}{2}$=n(n-1),
又∵a1=0,
∴an=n(n-1),
∴a2016=2016(2016-1)=2015•2016,
故选:B.
点评 本题考查数列的通项,利用累加法是解决本题的关键,注意解题方法的积累,属于中档题.
练习册系列答案
相关题目
2.集合M={x|x=sin$\frac{nπ}{3}$,n∈Z},N={x|x=cos$\frac{nπ}{2}$,n∈N},M∩N等于( )
A. | {-1,0,1} | B. | {0,1} | C. | {0} | D. | {-1,0} |
9.若函数f(x)=x-$\frac{2}{x}$-3lnx+k在其定义域上有三个零点,则实数k的取值范围是( )
A. | (-∞,1-3ln2) | B. | (1,3ln2-1) | C. | (1-3ln2,1) | D. | (1,+∞) |
19.直线ax+by+c=0与圆x2+y2=9相交于两点M、N,若c2=a2+b2,则|MN|=( )
A. | 4$\sqrt{2}$ | B. | 2$\sqrt{2}$ | C. | 2$\sqrt{10}$ | D. | $\sqrt{10}$ |
3.将4位同学分到三个不同的班级,每个班级至少有一位同学,则不同的分法有( )
A. | 34种 | B. | 72种 | C. | 64种 | D. | 36种 |