题目内容
如图,圆柱OO1内有一个三棱柱ABC-A1B1C1,三棱柱的底面为圆柱底面的内接三角形,且AB是圆O直径,AA1=AC=CB=2.
(Ⅰ)证明:平面A1ACC1⊥平面B1BCC1;
(Ⅱ)设E,F分别为AC,BC上的动点,且CE=BF=x,问当x为何值时,三棱锥C-EC1F的体积最大,最大值为多少?
(Ⅰ)证明:平面A1ACC1⊥平面B1BCC1;
(Ⅱ)设E,F分别为AC,BC上的动点,且CE=BF=x,问当x为何值时,三棱锥C-EC1F的体积最大,最大值为多少?
(Ⅰ)证明:因为AA1⊥平面ABC,BC?平面ABC,所以AA1⊥BC,
因为AB是圆O直径,所以BC⊥AC,又AC∩AA1=A,所以BC⊥平面A1ACC1,
而BC?平面B1BCC1,所以平面A1ACC1⊥平面B1BCC1;
(II)∵CE=BF=x,∴CF=2-x
∴VC-EC1F=VC1-ECF=
1 |
3 |
1 |
3 |
1 |
2 |
1 |
3 |
∴x=1时,三棱锥C-EC1F的体积最大,最大值为
1 |
3 |
练习册系列答案
相关题目