ÌâÄ¿ÄÚÈÝ
Èçͼ£¬Ô²ÖùOO1ÄÚÓÐÒ»¸öÈýÀâÖùABC-A1B1C1£¬ÈýÀâÖùµÄµ×ÃæΪԲÖùµ×ÃæµÄÄÚ½ÓÈý½ÇÐΣ¬ÇÒABÊÇÔ²OÖ±¾¶£®
£¨I£©Ö¤Ã÷£ºÆ½ÃæA1ACC1¡ÍƽÃæB1BCC1£»
£¨¢ò£©ÉèAB=AA1£¬ÔÚÔ²ÖùOO1ÄÚËæ»úÑ¡È¡Ò»µã£¬¼Ç¸ÃµãÈ¡×ÔÓÚÈýÀâÖùABC-A1B1C1ÄڵĸÅÂÊΪP£®
£¨i£©µ±µãCÔÚÔ²ÖÜÉÏÔ˶¯Ê±£¬ÇóPµÄ×î´óÖµ£»
£¨ii£©¼ÇƽÃæA1ACC1ÓëƽÃæB1OCËù³ÉµÄ½ÇΪ¦È£¨0¡ã¡Ü¦È¡Ü90¡ã£©£¬µ±PÈ¡×î´óֵʱ£¬Çócos¦ÈµÄÖµ£®
£¨I£©Ö¤Ã÷£ºÆ½ÃæA1ACC1¡ÍƽÃæB1BCC1£»
£¨¢ò£©ÉèAB=AA1£¬ÔÚÔ²ÖùOO1ÄÚËæ»úÑ¡È¡Ò»µã£¬¼Ç¸ÃµãÈ¡×ÔÓÚÈýÀâÖùABC-A1B1C1ÄڵĸÅÂÊΪP£®
£¨i£©µ±µãCÔÚÔ²ÖÜÉÏÔ˶¯Ê±£¬ÇóPµÄ×î´óÖµ£»
£¨ii£©¼ÇƽÃæA1ACC1ÓëƽÃæB1OCËù³ÉµÄ½ÇΪ¦È£¨0¡ã¡Ü¦È¡Ü90¡ã£©£¬µ±PÈ¡×î´óֵʱ£¬Çócos¦ÈµÄÖµ£®
·ÖÎö£º£¨I£©Óû֤ƽÃæA1ACC1¡ÍƽÃæB1BCC1£¬¹Ø¼üÊÇÕÒÏßÃæ´¹Ö±£¬¸ù¾ÝÖ±ÏßÓëƽÃæ´¹Ö±µÄÅж¨¶¨Àí¿ÉÖªBC¡ÍƽÃæA1ACC1£»
£¨¢ò£©£¨i£©¸ù¾ÝAC2+BC2=AB2Ϊ¶¨Öµ¿ÉÇó³öV1µÄ×î´óÖµ£¬´Ó¶øµÃµ½p=
µÄ×î´óÖµ£®
£¨ii£©pÈ¡×î´óֵʱ£¬OC¡ÍAB£¬ÓÚÊÇÒÔOΪ×ø±êԵ㣬½¨Á¢¿Õ¼äÖ±½Ç×ø±êϵO-xyz£¬Çó³öƽÃæA1ACC1µÄÒ»¸ö·¨ÏòÁ¿ÓëƽÃæB1OCµÄÒ»¸ö·¨ÏòÁ¿£¬È»ºóÇó³öÁ½·¨ÏòÁ¿µÄ¼Ð½Ç´Ó¶øµÃµ½¶þÃæ½ÇµÄÓàÏÒÖµ£®
£¨¢ò£©£¨i£©¸ù¾ÝAC2+BC2=AB2Ϊ¶¨Öµ¿ÉÇó³öV1µÄ×î´óÖµ£¬´Ó¶øµÃµ½p=
V1 |
V |
£¨ii£©pÈ¡×î´óֵʱ£¬OC¡ÍAB£¬ÓÚÊÇÒÔOΪ×ø±êԵ㣬½¨Á¢¿Õ¼äÖ±½Ç×ø±êϵO-xyz£¬Çó³öƽÃæA1ACC1µÄÒ»¸ö·¨ÏòÁ¿ÓëƽÃæB1OCµÄÒ»¸ö·¨ÏòÁ¿£¬È»ºóÇó³öÁ½·¨ÏòÁ¿µÄ¼Ð½Ç´Ó¶øµÃµ½¶þÃæ½ÇµÄÓàÏÒÖµ£®
½â´ð£º½â£º£¨¢ñ£©ÒòΪAA1¡ÍƽÃæABC£¬BC?ƽÃæABC£¬ËùÒÔAA1¡ÍBC£¬
ÒòΪABÊÇÔ²OÖ±¾¶£¬ËùÒÔBC¡ÍAC£¬ÓÖAC¡ÉAA1=A£¬ËùÒÔBC¡ÍƽÃæA1ACC1£¬
¶øBC?ƽÃæB1BCC1£¬ËùÒÔƽÃæA1ACC1¡ÍƽÃæB1BCC1£®
£¨¢ò£©£¨i£©ÉèÔ²ÖùµÄµ×Ãæ°ë¾¶Îªr£¬ÔòAB=AA1=2r£¬
¹ÊÈýÀâÖùABC-A1B1C1µÄÌå»ýΪ V1=
AC•BC•2r=AC•BC•r£¬
ÓÖÒòΪAC2+BC2=AB2=4r2£¬
ËùÒÔ AC•BC¡Ü
=2r2£¬µ±ÇÒ½öµ± AC=BC=
rʱµÈºÅ³ÉÁ¢£¬
´Ó¶øV1¡Ü2r3£¬¶øÔ²ÖùµÄÌå»ýV=¦Ðr2•2r=2¦Ðr3£¬
¹Êp=
¡Ü
=
£¬
µ±ÇÒ½öµ± AC=BC=
r£¬¼´OC¡ÍABʱµÈºÅ³ÉÁ¢£¬
ËùÒÔpµÄ×î´óÖµÊÇ
£®
£¨ii£©pÈ¡×î´óֵʱ£¬OC¡ÍAB£¬
ÓÚÊÇÒÔOΪ×ø±êԵ㣬
½¨Á¢¿Õ¼äÖ±½Ç×ø±êϵO-xyz£¬
ÔòC£¨r£¬0£¬0£©£¬B£¨0£¬r£¬0£©£¬B1£¨0£¬r£¬2r£©£¬
ÒòΪBC¡ÍƽÃæA1ACC1£¬
ËùÒÔ
=(r£¬-r£¬0)ÊÇƽÃæA1ACC1µÄÒ»¸ö·¨ÏòÁ¿£¬
ÉèƽÃæB1OCµÄ·¨ÏòÁ¿
=(x£¬y£¬z)£¬
ÓÉ
µÃ
£¬
¹Ê
£¬
È¡z=1µÃƽÃæB1OCµÄÒ»¸ö·¨ÏòÁ¿Îª
=(0£¬-2£¬1)£¬
ÒòΪ0¡ã£¼¦È¡Ü90¡ã£¬
ËùÒÔ cos¦È=|cos?
£¬
£¾|
=|
|
=|
|
=
£®
ÒòΪABÊÇÔ²OÖ±¾¶£¬ËùÒÔBC¡ÍAC£¬ÓÖAC¡ÉAA1=A£¬ËùÒÔBC¡ÍƽÃæA1ACC1£¬
¶øBC?ƽÃæB1BCC1£¬ËùÒÔƽÃæA1ACC1¡ÍƽÃæB1BCC1£®
£¨¢ò£©£¨i£©ÉèÔ²ÖùµÄµ×Ãæ°ë¾¶Îªr£¬ÔòAB=AA1=2r£¬
¹ÊÈýÀâÖùABC-A1B1C1µÄÌå»ýΪ V1=
1 |
2 |
ÓÖÒòΪAC2+BC2=AB2=4r2£¬
ËùÒÔ AC•BC¡Ü
AC2+BC2 |
2 |
2 |
´Ó¶øV1¡Ü2r3£¬¶øÔ²ÖùµÄÌå»ýV=¦Ðr2•2r=2¦Ðr3£¬
¹Êp=
V1 |
V |
2r3 |
2¦Ðr3 |
1 |
¦Ð |
µ±ÇÒ½öµ± AC=BC=
2 |
ËùÒÔpµÄ×î´óÖµÊÇ
1 |
¦Ð |
£¨ii£©pÈ¡×î´óֵʱ£¬OC¡ÍAB£¬
ÓÚÊÇÒÔOΪ×ø±êԵ㣬
½¨Á¢¿Õ¼äÖ±½Ç×ø±êϵO-xyz£¬
ÔòC£¨r£¬0£¬0£©£¬B£¨0£¬r£¬0£©£¬B1£¨0£¬r£¬2r£©£¬
ÒòΪBC¡ÍƽÃæA1ACC1£¬
ËùÒÔ
BC |
ÉèƽÃæB1OCµÄ·¨ÏòÁ¿
n |
ÓÉ
|
|
¹Ê
|
È¡z=1µÃƽÃæB1OCµÄÒ»¸ö·¨ÏòÁ¿Îª
n |
ÒòΪ0¡ã£¼¦È¡Ü90¡ã£¬
ËùÒÔ cos¦È=|cos?
n |
BC |
=|
| ||||
|
|
=|
2r | ||||
|
=
| ||
5 |
µãÆÀ£º±¾Ð¡ÌâÖ÷Òª¿¼²éÖ±ÏßÓëÖ±Ïß¡¢Ö±ÏßÓëƽÃ桢ƽÃæÓëƽÃæµÄλÖùØϵ£¬ÒÔ¼°¼¸ºÎÌåµÄÌå»ý¡¢¼¸ºÎ¸ÅÐ͵Ȼù´¡ÖªÊ¶£¬¿¼²é¿Õ¼äÏëÏóÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦¡¢ÍÆÀíÂÛÖ¤ÄÜÁ¦£¬¿¼²éÊýÐνáºÏ˼Ïë¡¢»¯¹éÓëת»¯Ë¼Ïë¡¢±ØÈ»Óë»òȻ˼Ï룮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿