题目内容
【题目】某动物园要为刚入园的小动物建造一间两面靠墙的三角形露天活动室,地面形状如图所示,已知已有两面墙的夹角为,墙的长度为米,(已有两面墙的可利用长度足够大),记.
(1)若,求的周长(结果精确到0.01米);
(2)为了使小动物能健康成长,要求所建的三角形露天活动室面积,的面积尽可能大,当为何值时,该活动室面积最大?并求出最大面积.
【答案】(1) 米.
(2) 当且仅当时等号成立,此时为等边三角形
,.
【解析】分析:(1)在中,由正弦定理可得,即可求的周长;
(2)利用余弦定理列出关系式,将的值代入并利用基本不等式求出的最大值,利用三角形的面积公式求出面积的最大值,以及此时的值.
详解:(1)在中,有正弦定理可得,
,
的周长为米.
(2)在中,有余弦定理得
当且仅当时等号成立,此时为等边三角形
,.
练习册系列答案
相关题目
【题目】2018年9月,台风“山竹”在沿海地区登陆,小张调查了当地某小区的100户居民由于台风造成的经济损失,将收集到的数据分成五组:,,,,单位:千元,并作出如下频率分布直方图
经济损失不超过4千元 | 经济损失超过4千元 | 合计 | |
捐款超过 500元 | 60 | ||
捐款不超 过500元 | 10 | ||
合计 |
1台风后居委会号召小区居民为台风重灾区捐款,小张调查的100户居民捐款情况如表格,在表格空白处填写正确数字,并说明是否有以上的把握认为捐款数额多于或少于500元和自身经济损失是否到4千元有关?
2将上述调查得到的频率视为概率,现在从该地区大量受灾居民中,采用随机抽样的方法每次抽取一户居民,连抽3次,记被抽取的3户居民中自身经济损失超过4千元的户数为,若每次抽取的结果是相互独立的,求的分布列和数学期望.
附:临界值表:
k |
随机变量:,其中.