题目内容

3.设实数x,y满足$\left\{\begin{array}{l}{(2x-y+2)(4x-y-2)≤0}\\{0≤x≤2}\\{y≥0}\end{array}\right.$,若目标函数z=mnx+y(0<n<m)的最大值为10,则2m+n的取值范围为(  )
A.(4,+∞)B.[4,+∞)C.[3$\sqrt{2}$,+∞)D.(3$\sqrt{2}$,+∞)

分析 作出不等式组对应的平面区域,利用目标函数的最大值确定最优解,联立方程组求得最优解的坐标,代入目标函数求得mn=2,结合已知得到m的范围,然后利用函数单调性即可得到结论.

解答 解:作出不等式组对应的平面区域如图,
由z=mnx+y(m>n>0),
得y=-mnx+z(m>n>0),
则由图象可知当直线y=-mnx+z经过点C时,截距最大,此时z最大为10,
由$\left\{\begin{array}{l}{2x-y+2=0}\\{4x-y-2=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=2}\\{y=6}\end{array}\right.$.
即C(2,6),此时2mn+6=10,
即mn=2,
∵m>n>0,∴m$>\sqrt{2}$.
∴2m+n=2m+$\frac{2}{m}$=2(m+$\frac{1}{m}$)$>2(\sqrt{2}+\frac{\sqrt{2}}{2})=3\sqrt{2}$.
∴2m+n的取值范围为($3\sqrt{2},+∞$).
故选:D.

点评 本题主要考查线性规划的应用以及利用函数单调性求函数最值,利用数形结合是解决本题的关键,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网