题目内容
【题目】已知椭圆,圆心为坐标原点的单位圆O在C的内部,且与C有且仅有两个公共点,直线与C只有一个公共点.
(1)求C的标准方程;
(2)设不垂直于坐标轴的动直线l过椭圆C的左焦点F,直线l与C交于A,B两点,且弦AB的中垂线交x轴于点P,求的值.
【答案】(1) (2)
【解析】
(1)利用单位圆的性质求得,利用直线和椭圆联立方程后关于的方程只有一个解,判别式为列方程,由此求得.进而求得椭圆的标准方程.
(2)设出直线的方程,代入椭圆方程,写出韦达定理,求得中点的坐标,利用中垂线的斜率列方程,求得点的横坐标,由此求得.利用弦长公式求得,进而求得的值.
(1)依题意,得
将代入椭圆的方程,得
由,解得
所以椭圆的标准方程为
(2)由(1)可得左焦点
由题意设直线的方程为,
代入椭圆方程,得
设,则
所以,AB的中点为
设点,则,
解得
所以
又
所以
【题目】学校为了了解高三学生每天自主学习中国古典文学的时间,随机抽取了高三男生和女生各50名进行问卷调查,其中每天自主学习中国古典文学的时间超过3小时的学生称为“古文迷”,否则为“非古文迷”,调查结果如表:
古文迷 | 非古文迷 | 合计 | |
男生 | 26 | 24 | 50 |
女生 | 30 | 20 | 50 |
合计 | 56 | 44 | 100 |
(Ⅰ)根据表中数据能否判断有的把握认为“古文迷”与性别有关?
(Ⅱ)现从调查的女生中按分层抽样的方法抽出5人进行调查,求所抽取的5人中“古文迷”和“非古文迷”的人数;
(Ⅲ)现从(Ⅱ)中所抽取的5人中再随机抽取3人进行调查,记这3人中“古文迷”的人数为,求随机变量的分布列与数学期望.
参考公式: ,其中.
参考数据:
0.50 | 0.40 | 0.25 | 0.05 | 0.025 | 0.010 | |
0.455 | 0.708 | 1.321 | 3.841 | 5.024 | 6.635 |
【题目】某景区的各景点从2009年取消门票实行免费开放后,旅游的人数不断地增加,不仅带动了该市淡季的旅游,而且优化了旅游产业的结构,促进了该市旅游向“观光、休闲、会展”三轮驱动的理想结构快速转变.下表是从2009年至2018年,该景点的旅游人数(万人)与年份的数据:
第年 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
旅游人数(万人) | 300 | 283 | 321 | 345 | 372 | 435 | 486 | 527 | 622 | 800 |
该景点为了预测2021年的旅游人数,建立了与的两个回归模型:
模型①:由最小二乘法公式求得与的线性回归方程;
模型②:由散点图的样本点分布,可以认为样本点集中在曲线的附近.
(1)根据表中数据,求模型②的回归方程.(精确到个位,精确到0.01).
(2)根据下列表中的数据,比较两种模型的相关指数,并选择拟合精度更高、更可靠的模型,预测2021年该景区的旅游人数(单位:万人,精确到个位).
回归方程 | ① | ② |
30407 | 14607 |
参考公式、参考数据及说明:
①对于一组数据,其回归直线的斜率和截距的最小二乘法估计分别为.②刻画回归效果的相关指数;③参考数据:,.
5.5 | 449 | 6.05 | 83 | 4195 | 9.00 |
表中.
【题目】某校教务处对学生学习的情况进行调研,其中一项是:对“学习数学”的态度是否与性别有关,可见随机抽取了30名学生进行了问卷调查,得到了如下联表:
男生 | 女生 | 合计 | |
喜欢 | 10 | ||
不喜欢 | 8 | ||
合计 | 30 |
已知在这30人中随机抽取1人,抽到喜欢“学习数学”的学生的概率是.
(1)请将上面的列联表补充完整(在答题卷上直接填写结果,不需要写求解过程);
(2)若从喜欢“学习数学”的女生中抽取2人进行调研,其中女生甲被抽到的概率为多少?(要写求解过程)
(3)试判断是否有95%的把握认为喜欢“学习数学”与性别有关?
附:,其中.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |