题目内容

已知双曲线方程2x2-y2=2.
(1)求以A(2,1)为中点的双曲线的弦所在的直线方程;
(2)过点(1,1)能否作直线l,使l与双曲线交于Q1,Q2两点,且Q1,Q2两点的中点为(1,1)?如果存在,求出它的方程;如果不存在,说明理由.
(1);(2)直线l不存在,理由详见解析

试题分析:(1)设出弦的两端点,代入双曲线方程,作差即可得到弦所在直线的斜率,再利用点斜式求直线方程。(2)同(1)中方法可求得弦所在直线方程,代入双曲线,消掉y(或x)整理出关于x的一元二次方程,看判别式。若判别式大于等于0,则所求直线存在,否则不存在。
试题解析:(1)设弦的两端点为,因为A(2,1)为中点,所以。因为在双曲线上所以,两式相减得,所以,所以
所以所求弦所在直线方程为,即
将直线方程代入双曲线方程,整理成关于x的一元二次方程,经检验
(2)假设直线l存在,由(1)中方法可求得直线方程为,联立方程,消去y得,因为,因此直线与双曲线无交点,所以直线l不存在。
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网