题目内容

已知
(1)若,且∥(),求x的值;
(2)若,求实数的取值范围.
(1) (2) .

试题分析:(1)先将向量化为代数式,即, 

(2)由已知先写出的坐标,再由 则有:时等式不成立;将写成关于的函数,即 ,再求函数的值域即是的取值范围为
(或解)用表示,即,又因为  ,可解的取值范围为.
试题解析:(1)
, 

(2)
则有:
时等式不成立; 解得:的取值范围为
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网