题目内容
(本小题满分12分)
如图,在
中,设
,
,
的中点为
,
的中点为
,
的中点恰为
.
(Ⅰ)若
,求
和
的值;
(Ⅱ)以
,
为邻边,
为对角线,作平行四边形
,
求平行四边形
和三角形
的面积之比
.![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232344487502564.jpg)
如图,在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234448329491.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234448360475.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234448376461.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234448391362.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234448423337.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234448454412.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234448469317.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234448485375.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234448516289.png)
(Ⅰ)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234448532729.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234448563285.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234448579296.png)
(Ⅱ)以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234448610375.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234448625363.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234448391362.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234448672584.png)
求平行四边形
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234448672584.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234448719419.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234448735714.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232344487502564.jpg)
(1)
;
(2)![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232344487973591.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232344487812121.png)
(2)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232344487973591.png)
本试题主要是考查了平面向量的基本定理的运用。
(1)∵Q为AP中点,∴
P为CR中点,
,
,得到参数的 值。
(2)因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232344489221188.png)
则可结合正弦面积公式得到结论。
(1)解:∵Q为AP中点,∴
P为CR中点,
∴
同理:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232344490311330.png)
而
∴![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232344490781731.png)
即
(2)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232344489221188.png)
∴![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232344492033660.png)
(1)∵Q为AP中点,∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232344488281138.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232344488441178.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232344488751173.png)
(2)因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232344488911238.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232344489221188.png)
则可结合正弦面积公式得到结论。
(1)解:∵Q为AP中点,∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232344488281138.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232344489691184.png)
同理:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232344488751173.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232344490311330.png)
而
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234449047758.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232344490781731.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232344487812121.png)
(2)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232344488911238.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232344489221188.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232344492033660.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目