ÌâÄ¿ÄÚÈÝ
¡¾ÌâÄ¿¡¿ÒÑÖªf(x)Ϊ¶¨ÒåÔÚRÉϵÄżº¯Êý£¬µ±x¡Ý0ʱ£¬ÓÐf(x£«1)£½£f(x)£¬ÇÒµ±x¡Ê[0,1)ʱ£¬f(x)£½log2(x£«1)£¬¸ø³öÏÂÁÐÃüÌâ
¢Ùf(2014)£«f(£2015)£½0£»
¢Úº¯Êýf(x)ÔÚ¶¨ÒåÓòÉÏÊÇÖÜÆÚΪ2µÄº¯Êý£»
¢ÛÖ±Ïßy£½xÓ뺯Êýf(x)µÄͼÏóÓÐ2¸ö½»µã£»
¢Üº¯Êýf(x)µÄÖµÓòΪ(£1,1)£®
ÆäÖÐÕýÈ·µÄÊÇ(¡¡¡¡)
A. ¢Ù¢Ú B. ¢Ú¢Û
C. ¢Ù¢Ü D. ¢Ù¢Ú¢Û¢Ü
¡¾´ð°¸¡¿C
¡¾½âÎö¡¿ÓÉÓÚµ±x¡Ý0ʱ£¬ÓÐf(x£«1)£½£f(x)£¬ËùÒÔf(x£«2)£½£f(x£«1)£½f(x)£¬
´Ó¶øµ±x¡Ê[1,2)ʱ£¬x£1¡Ê[0,1)£¬ÓÐf(x£1)£½log2x£¬
ÓÖf((x£1)£«1)£½£f(x£1)f(x£1)£½£f(x)£½log2xf(x)£½£log2x
¼´f(x)£½£»
ÔÙ×¢Òâf(x)Ϊ¶¨ÒåÔÚRÉϵÄżº¯Êý£¬ËùÒÔ¿É×÷³öº¯Êýf(x)µÄͼÏóÈçÏ£º
¶ÔÓÚ¢Ùf(2014)£«f(£2015)£½f(2¡Á1007£«0)£«f(2015)
£½f(0)£«f(2¡Á1007£«1)£½0£«f(1)£½£log21£½0£¬¹Ê¢ÙÕýÈ·£»ÅųýB£»
¶ÔÓÚ¢ÚÓÉͼÏó¿ÉÖªº¯Êý²»ÊÇÖÜÆÚº¯Êý£¬¹Ê¢ÚÊÇ´íÎóµÄ£»ÅųýA¡¢D£»
¶ÔÓÚ¢ÛÓÉͼÏó¿ÉÖªÖ±Ïßy£½xÓ뺯Êýf(x)µÄͼÏóÖ»ÓÐ1¸ö½»µã£¬¹Ê¢Û´íÎó£»
¶ÔÓÚ¢ÜÓÉͼÏó¿ÉÖªº¯ÊýµÄÖµÓòΪ(£1,1)£¬¹Ê¢ÜÕýÈ·£®
¹ÊÑ¡C.
µã¾¦: º¯ÊýµÄÆæżÐÔÓëÖÜÆÚÐÔÏà½áºÏµÄÎÊÌâ¶à¿¼²éÇóÖµÎÊÌ⣬³£ÀûÓÃÆæżÐÔ¼°ÖÜÆÚÐÔ½øÐб任£¬½«ËùÇóº¯ÊýÖµµÄ×Ô±äÁ¿×ª»¯µ½ÒÑÖª½âÎöʽµÄº¯Êý¶¨ÒåÓòÄÚÇó½â£®