题目内容
【题目】已知D是△ABC边BC延长线上一点,记 .若关于x的方程2sin2x﹣(λ+1)sinx+1=0在[0,2π)上恰有两解,则实数λ的取值范围是( )
A.λ<﹣2
B.λ<﹣4
C.
D.λ<﹣4或
【答案】D
【解析】解:∵ =λ +(1﹣λ) = +λ( ﹣ )= +λ = +(﹣λ) .
又∵ = + ,∴ =(﹣λ) ,由题意得﹣λ>0,∴λ<0.
∵关于x的方程2sin2x﹣(λ+1)sinx+1=0在[0,2π)上恰有两解,令sinx=t,由正弦函数的图象知,
方程 2t2﹣(λ+1)t+1=0 在(﹣1,1)上有唯一解,
∴[2﹣(λ+1)+1][2+(λ+1)+1]<0 ①,或△=(λ+1)2﹣8=0 ②,
由①得 λ<﹣4 或λ>2(舍去). 由②得 λ=﹣1﹣2 ,或 λ=﹣1+2 (舍去).
故选D.
练习册系列答案
相关题目