题目内容
11.已知数列{an}的前n项和是2Sn=3n+3,则数列的通项an=$\left\{\begin{array}{l}{3,n=1}\\{{3}^{n-1},n≥2}\end{array}\right.$.分析 由2Sn=3n+3,可得当n=1时,2a1=3+3,解得a1.当n≥2时,$2{S}_{n-1}={3}^{n-1}$+3,2an=2Sn-2Sn-1即可得出.
解答 解:∵2Sn=3n+3,
∴当n=1时,2a1=3+3,解得a1=3.
当n≥2时,$2{S}_{n-1}={3}^{n-1}$+3,∴2an=(3n+3)-(3n-1+3),
化为an=3n-1.
∴an=$\left\{\begin{array}{l}{3,n=1}\\{{3}^{n-1},n≥2}\end{array}\right.$,
故答案为:$\left\{\begin{array}{l}{3,n=1}\\{{3}^{n-1},n≥2}\end{array}\right.$.
点评 本题考查了递推关系的应用,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
6.若实数x,y满足不等式组$\left\{\begin{array}{l}{x+y≥0}\\{x+2y-4≤0}\\{x-my-1≤0}\end{array}\right.$,且x+y的最大值为3,则实数m=( )
A. | -1 | B. | $\frac{1}{2}$ | C. | 1 | D. | 2 |
3.已知等差数列{an}满足a2=2,a6=0,则数列{an}的公差为( )
A. | $\frac{1}{2}$ | B. | 2 | C. | -$\frac{1}{2}$ | D. | -2 |
20.经过圆x2-2x+y2=0的圆心C,且与直线x+y=0垂直的直线方程是( )
A. | x-y+1=0 | B. | x-y-1=0 | C. | x+y-1=0 | D. | x+y+1=0 |
1.已知点(a,b)与点(2,0)位于直线2x+3y-1=0的同侧,且a>0,b>0,则z=$\frac{4b+1}{4a-1}$的取值范围是( )
A. | (-$\frac{7}{3}$,1) | B. | ($-∞,-\frac{7}{3}$)∪(1,+∞) | C. | ($-∞,-\frac{7}{3}$)∪(0,+∞) | D. | ($-\frac{7}{3}$,0) |