题目内容

(本小题满分13分)

设函数对任意的实数,都有,且当时,

(1)若时,求的解析式;

(2)对于函数,试问:在它的图象上是否存在点,使得函数在点处的切线与平行。若存在,那么这样的点有几个;若不存在,说明理由。

(3)已知,且 ,记,求证:

 

【答案】

 

解:(1);(2)满足题意的点有5个;(3)  .                          

 

【解析】本试题主要考查了函数的解析式的求解,以及过点的切线方程的问题,和不等式的证明 的综合运用。

(1)第一问中将所求的变量转化为已知的区间,利用已知的关系式求解得到解析式。

(2)在第一问的基础上进一步得到函数的一般式,然后利用导数的思想,只要判定导函数为零,方程有无解即可。

(3)在第二问的得到函数的单调性,以及函数的最大值,然后结合函数的最值得到不等式,再结合等比数列的求和的思想得到。

解:(1)∵

,则,∴。…………………2分

(2)设,则

,即为………4分

 

∴问题转化为判断:关于的方程内是否解,即内是否有解,……………………6分

函数 的图象是开口向上的抛物线,其对称轴是直线

判别式

时,∵

∴方程分别在区间上各有一解,即存在5个满足题意的点

②当时,∵,∴方程在区间上无解。

综上所述:满足题意的点有5个。                       …………………………9分

(3)由(2)可知:

∴当时,上递增;

时,上递减。

∴当时,

∴对任意的,当时,都有

                                       …………………………13分

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网