题目内容
如图,已知平面四边形ABCD中,△BCD为正三角形,AB=AD=2,∠BAD=2θ,记四边形ABCD的面积为S.(1)将S表示为θ的函数;
(2)求S的最大值及相应的θ值.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184239611174057/SYS201310241842396111740015_ST/images0.png)
【答案】分析:(1)根据题设条件合理建立方程,从而得出S关于θ的函数关系式.
(2)利用正弦函数取得最大值的结论,可以得到S的最大值及相应的θ值.
解答:解:(1)∵∠BAD=2θ,
∴△DAD中,BD2=AB2+AD2-2AB•ADcos2θ=8-8cos2θ,
∵△BCD为正三角形
∴S△BCD=
BD2=
(2-2cos2θ)
∴四边形ABCD的面积为S=S△BAD+S△BCD=
•AB•ADsin2θ+
(2-2cos2θ)
=
+2sin2θ-2
cos2θ=
+4sin(2θ-
),其中θ∈(0,
)
(2)由(1)得,当2θ-
=
时,
即θ=
时,S的最大值为4+
.
点评:本题主要考查了在实际问题中建立三角函数模型的问题.考查了学生知识的掌握和迁移的能力.挖掘题设条件,合理运用三角函数是正确解题的关键.
(2)利用正弦函数取得最大值的结论,可以得到S的最大值及相应的θ值.
解答:解:(1)∵∠BAD=2θ,
∴△DAD中,BD2=AB2+AD2-2AB•ADcos2θ=8-8cos2θ,
∵△BCD为正三角形
∴S△BCD=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184239611174057/SYS201310241842396111740015_DA/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184239611174057/SYS201310241842396111740015_DA/1.png)
∴四边形ABCD的面积为S=S△BAD+S△BCD=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184239611174057/SYS201310241842396111740015_DA/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184239611174057/SYS201310241842396111740015_DA/3.png)
=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184239611174057/SYS201310241842396111740015_DA/4.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184239611174057/SYS201310241842396111740015_DA/5.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184239611174057/SYS201310241842396111740015_DA/6.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184239611174057/SYS201310241842396111740015_DA/7.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184239611174057/SYS201310241842396111740015_DA/8.png)
(2)由(1)得,当2θ-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184239611174057/SYS201310241842396111740015_DA/9.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184239611174057/SYS201310241842396111740015_DA/10.png)
即θ=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184239611174057/SYS201310241842396111740015_DA/11.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184239611174057/SYS201310241842396111740015_DA/12.png)
点评:本题主要考查了在实际问题中建立三角函数模型的问题.考查了学生知识的掌握和迁移的能力.挖掘题设条件,合理运用三角函数是正确解题的关键.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目