题目内容

精英家教网如图,已知平面四边形ABCD中,△BCD为正三角形,AB=AD=2,∠BAD=2θ,记四边形ABCD的面积为S.
(1)将S表示为θ的函数;
(2)求S的最大值及相应的θ值.
分析:(1)根据题设条件合理建立方程,从而得出S关于θ的函数关系式.
(2)利用正弦函数取得最大值的结论,可以得到S的最大值及相应的θ值.
解答:解:(1)∵∠BAD=2θ,
∴△DAD中,BD2=AB2+AD2-2AB•ADcos2θ=8-8cos2θ,
∵△BCD为正三角形
∴S△BCD=
3
4
BD2=
3
(2-2cos2θ)
∴四边形ABCD的面积为S=S△BAD+S△BCD=
1
2
•AB•ADsin2θ+
3
(2-2cos2θ)
=2
3
+2sin2θ-2
3
cos2θ=2
3
+4sin(2θ-
π
3
),其中θ∈(0,
π
2

(2)由(1)得,当2θ-
π
3
=
π
2
时,
即θ=
12
时,S的最大值为4+2
3
点评:本题主要考查了在实际问题中建立三角函数模型的问题.考查了学生知识的掌握和迁移的能力.挖掘题设条件,合理运用三角函数是正确解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网