题目内容
12.设a>b>0,则a+$\frac{1}{b}$+$\frac{1}{a-b}$的最小值为( )A. | 2 | B. | 3 | C. | 4 | D. | 3+2$\sqrt{2}$ |
分析 由题意可得a-b>0,a+$\frac{1}{b}$+$\frac{1}{a-b}$=(a-b)+$\frac{1}{b}$+$\frac{1}{a-b}$+b,由基本不等式可得.
解答 解:解:∵a>b>0,∴a-b>0,
∴a+$\frac{1}{b}$+$\frac{1}{a-b}$=(a-b)+$\frac{1}{b}$+$\frac{1}{a-b}$+b≥4$\root{4}{(a-b)•\frac{1}{b}•\frac{1}{a-b}•b}$=4
当且即当(a-b)=$\frac{1}{b}$=$\frac{1}{a-b}$=b即a=2且b=1时取等号,
∴a+$\frac{1}{b}$+$\frac{1}{a-b}$的最小值为:4
故选:C.
点评 本题考查基本不等式的应用,注意检验等号成立的条件,式子的变形是解题的关键.
练习册系列答案
相关题目
2.已知函数f(x)=cos(ωx-$\frac{π}{6}$)(ω>0)的一条对称轴与最近的一个零点的距离为$\frac{π}{4}$,要y=f(x)的图象,只需把y=cosωx的图象 ( )
A. | 向右平移$\frac{π}{12}$个单位 | B. | 向左平移$\frac{π}{12}$个单位 | ||
C. | 向右平移$\frac{π}{6}$个单位 | D. | 向左平移$\frac{π}{6}$个单位 |
20.已知在平面直角坐标系中,点P是直线l:l=-$\frac{1}{2}$上一动点,定点F($\frac{1}{2}$,0),点Q为PF的中点,动点M满足$\overrightarrow{MQ}$•$\overrightarrow{PF}$=0,$\overrightarrow{MP}$=λ$\overrightarrow{OF}$(λ∈R).过点M作圆(x-3)2+y2=2的切线,切点分别为S,T,则$\overrightarrow{MS}$•$\overrightarrow{MT}$的最小值是( )
A. | $\frac{3}{5}$ | B. | $\frac{35}{9}$ | C. | $\frac{10}{3}$ | D. | -$\frac{1}{3}$ |
1.掷一枚硬币,记事件A:“出现正面”,B:“出现反面”,则有( )
A. | A与B相互独立 | B. | P(AB)=P(A)•P(B) | C. | A与$\overline{B}$不相互独立 | D. | P(AB)=$\frac{1}{4}$ |