题目内容
已知两个正数a,b,可按规则c=ab+a+b扩充为一个新数c,在a,b,c三个数中取两个较大的数,按上述规则扩充得到一个新数,依次下去,将每扩充一次得到一个新数称为一次操作.
(1)若a=1,b=3,按上述规则操作三次,扩充所得的数是________;
(2)若p>q>0,经过6次操作后扩充所得的数为(q+1)m(p+1)n-1(m,n为正整数),则m,n的值分别为________.
解:(1)a=1,b=3,按规则操作三次,
第一次:c=ab+a+b=1×3+1+3=7
第二次,7>3>1所以有:c=3×7+3+7=31
第三次:31>7>3所以有:c=7×31+7+31=255
2、p>q>0 第一次得:c1=pq+p+q=(q+1)(p+1)-1
因为c>p>q,所以第二次得:c2=(c1+1)(p+1)-1=(pq+p+q)p+p+(pq+p+q)=(p+1)2(q+1)-1
所得新数大于任意旧数,所以第三次可得c3=(c2+1)(c1+1)-1=(p+1)3(q+1)2-1
第四次可得:c4=(c3+1)(c2-1)-1=(p+1)5(q+1)3-1
故经过6次扩充,所得数为:(q+1)8(p+1)13-1
∴m=8,n=13
故答案为:255;8,13
分析:(1)a=1,b=3,按规则操作三次,第一次:c=7;第二次c=31;第三次c=255;
(2)p>q>0 第一次得:c1=pq+p+q=(q+1)(p+1)-1;第二次得:c2=(p+1)2(q+1)-1;所得新数大于任意旧数,故经过6次扩充,所得数为:(q+1)8(p+1)13-1,故可得结论
点评:本题考查新定义,考查学生的计算能力,考查学生分析解决问题的能力
第一次:c=ab+a+b=1×3+1+3=7
第二次,7>3>1所以有:c=3×7+3+7=31
第三次:31>7>3所以有:c=7×31+7+31=255
2、p>q>0 第一次得:c1=pq+p+q=(q+1)(p+1)-1
因为c>p>q,所以第二次得:c2=(c1+1)(p+1)-1=(pq+p+q)p+p+(pq+p+q)=(p+1)2(q+1)-1
所得新数大于任意旧数,所以第三次可得c3=(c2+1)(c1+1)-1=(p+1)3(q+1)2-1
第四次可得:c4=(c3+1)(c2-1)-1=(p+1)5(q+1)3-1
故经过6次扩充,所得数为:(q+1)8(p+1)13-1
∴m=8,n=13
故答案为:255;8,13
分析:(1)a=1,b=3,按规则操作三次,第一次:c=7;第二次c=31;第三次c=255;
(2)p>q>0 第一次得:c1=pq+p+q=(q+1)(p+1)-1;第二次得:c2=(p+1)2(q+1)-1;所得新数大于任意旧数,故经过6次扩充,所得数为:(q+1)8(p+1)13-1,故可得结论
点评:本题考查新定义,考查学生的计算能力,考查学生分析解决问题的能力
练习册系列答案
相关题目