题目内容
(本小题满分13分)已知圆C的圆心在直线y=x+1上,且过点(1,3),与直线x+2y-7=0相切.
(1)求圆C的方程;
(2)设直线:与圆C相交于A、B两点,求实数的取值范围;
(3)在(Ⅱ)的条件下,是否存在实数,使得弦的垂直平分线过点, 若存在,求出实数的值;若不存在,请说明理由.
【答案】
(1)为。(2) 的取值范围是();
(3)不存在实数,使得过点的直线垂直平分弦.
【解析】本试题主要是考查了线与圆的位置关系的综合运用。
(1)因为圆C的圆心在直线y=x+1上,且过点(1,3),与直线x+2y-7=0相切. 利用圆心到直线的距离等于圆的半径得到结论。
(2)因为直线与圆相交,则圆心到直线的距离小于圆的半径得到参数a的范围。
(3)设符合条件的实数存在,由于,则直线的斜率为,的方程为,即,由于垂直平分弦,故圆心上,从而得到。
解:(1)因为圆C的圆心在直线y=x+1上,可设圆心坐标为,由题意可列方
程,解得,所以圆心坐标为(),半径
为,所以圆的方程为。-----------------5分
(2)联立方程,消得,由于直线与圆交于两点,所以,解得,所以的取值范围是()------8分(3)设符合条件的实数存在,由于,则直线的斜率为,的方程为,即,由于垂直平分弦,故圆心上,
所以,解得,由于,故不存在实数,使得过点的直线垂直平分弦.--------------13分
练习册系列答案
相关题目