题目内容

下列命题:
①若f(x)存在导函数,则f′(2x)=[f(2x)]′;
②若函数h(x)=cos4x-sin4x,则h′(
π
12
)=0;
③若函数g(x)=(x-1)(x-2)(x-3)…(x-2012)(x-2013),则g′(2013)=2012!;
④若三次函数f(x)=ax3+bx2+cx+d,则“a+b+c=0”是“f(x)有极值点”的充要条件;
⑤函数f(x)=
sinx
2+cosx
的单调递增区间是(2π-
3
,2kπ+
3
)(k∈z).
其中真命题为
③⑤
③⑤
分析:分别利用导数的运算以及导数的应用进行判断即可.
解答:解:①[f(2x)]′=f′(2x)(2x)′=2f′(2x),所以①错误.
②因为h(x)=cos4x-sin4x=(cos2x+sin2x)(cos2x-sin2x)=cos2x,
所以h'(x)=-2sin2x,即h′(
π
12
)=-1,所以②错误.
③因为g(x)=(x-1)(x-2)(x-3)…(x-2012)(x-2013),
所以g'(x)=[(x-1)(x-2)…(x-2012)]+(x-2013)?[(x-1)(x-2)…(x-2012)]'
所以g'(2013)=(2013-1)(2013-2)…(2013-2012)=1×2×…×2012=2012!,所以③正确.
④三次函数的导数f′(x)=3ax2+2bx+c,要使f(x)有极值点,则f′(x)=3ax2+2bx+c=0有两个不等的实根,即△=b2-3ac>0,当a=b=c=0时,△=0,不成立,所以④错误.
⑤函数的导数为f′(x)=
cosx(2+cosx)-sinx(-sinx)
(2+cosx)2
=
1+2cosx
(2+cosx)2
,由f′(x)>0,得1+2cosx>0,即cosx>-
1
2
2kπ-
3
  <x<2kπ+
3
 ,k∈Z

即函数的单调递增区间为(2π-
3
,2kπ+
3
)(k∈z),所以⑤正确.
故答案为:③⑤
点评:本题主要考查导数的运算以及导数的应用,比较综合.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网