题目内容

⑴用综合法证明:
⑵用反证法证明:若均为实数,且,求证中至少有一个大于0.

(1)证明详见解析;(2)证明详见解析.

解析试题分析:(1)充分利用好基本不等式得出,进而再利用同向不等式的可加性即可得到结论,注意关注等号成立的条件;(2)先设结论的反面成立即都不大于0,进而得出,另一方面,从而产生了矛盾,进而肯定假设不成立,可得原命题的结论成立.
(1)由(当且仅当时等号成立)可得
(当且仅当时等号成立)  ①
(当且仅当时等号成立)  ②
(当且仅当时等号成立)  ③
所以①+②+③得,当且仅当时,等号成立;
(2)假设都不大于0即
根据同向不等式的可加性可得 ④
与④式矛盾
所以假设不成立即原命题的结论中至少有一个大于0.
考点:1.综合法;2.反证法;3.基本不等式的应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网