题目内容
已知向量
和
的夹角为30°,|
|=2,|
|=
(1)求
•
(2)求|
+
|.
| a |
| b |
| a |
| b |
| 3 |
(1)求
| a |
| b |
| a |
| b |
分析:(1)由已知向量
和
的夹角为30°,|
|=2,|
|=
,代入向量数量积的定义可得,
•
=|
||
|cos30°可求
(2)结合向量数量积的性质可知,|
+
| =
=
,把已知代入可求
| a |
| b |
| a |
| b |
| 3 |
| a |
| b |
| a |
| b |
(2)结合向量数量积的性质可知,|
| a |
| b |
(
|
|
解答:解:(1)∵向量
和
的夹角为30°,|
|=2,|
|=
由向量数量积的定义可得,
•
=|
||
|cos30°=2×
×
=3
(2)∵|
|=2,|
|=
,
•
=3
∴|
+
| =
=
=
=
| a |
| b |
| a |
| b |
| 3 |
由向量数量积的定义可得,
| a |
| b |
| a |
| b |
| 3 |
| ||
| 2 |
(2)∵|
| a |
| b |
| 3 |
| a |
| b |
∴|
| a |
| b |
(
|
|
=
| 4+2×3+3 |
| 13 |
点评:本题主要考查了向量数量积的定义及向量数量积的性质的简单应用,属于基础性试题.
练习册系列答案
相关题目