题目内容

当x∈(1,2)时,不等式x2+mx+4<0恒成立,则m的取值范围是
 
分析:①构造函数:f(x)=x2+mx+4,x∈[1,2].②讨论 对称轴x=-
m
2
3
2
-
m
2
3
2
时f(x)的单调性,得f(1),f(2)为两部分的最大值若满足f(1),f(2)都小于等于0即能满足x∈(1,2)时f(x)<0,由此则可求出m的取值范围
解答:解:法一:根据题意,构造函数:f(x)=x2+mx+4,x∈[1,2].由于当x∈(1,2)时,不等式x2+mx+4<0恒成立.
则由开口向上的一元二次函数f(x)图象可知f(x)=0必有△>0,
①当图象对称轴x=-
m
2
3
2
时,f(2)为函数最大值当f(2)≤0,得m解集为空集.
②同理当-
m
2
3
2
时,f(1)为函数最大值,当f(1)≤0可使 x∈(1,2)时f(x)<0.
由f(1)≤0解得m≤-5.综合①②得m范围m≤-5
法二:根据题意,构造函数:f(x)=x2+mx+4,x∈[1,2].由于当x∈(1,2)时,不等式x2+mx+4<0恒成立
f(1)≤0
f(2)≤0
解得
m≤-4
m≤-5
即 m≤-5
故答案为 m≤-5
点评:本题考查二次函数图象讨论以及单调性问题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网