题目内容
【题目】如图,在三棱柱中,四边形是菱形,四边形是正方形,,,,点为的中点.
(1)求证:平面;
(2)求点到平面的距离.
【答案】(1)见解析;(2).
【解析】
(1)连接AF,与CD交于点H,连接GH,由中位线定理可得BF∥GH,从而得证;
(2)由点H为AF的中点,可知点F到平面CDG的距离与点A到平面CDG的距离相等,再利用,即可得解.
(1)连接AF,与CD交于点H,连接GH,
则GH为△ABF的中位线,
所以BF∥GH,
又BF平面CDG,GH平面CDG,
所以BF∥平面CDG.
(2)由点H为AF的中点,且点平面CDG可知,
点F到平面CDG的距离与点A到平面CDG的距离相等,
由四边形是正方形,,可得是三棱锥的高,
由题意得,,
所以,
在△CDG中,,
设点A到平面CDG的距离为h,则,
由得,,
所以点F到平面CDG的距离为.
【题目】随着“互联网+交通”模式的迅猛发展,“共享自行车”在很多城市相继出现。某运营公司为了了解某地区用户对其所提供的服务的满意度,随机调查了40个用户,得到用户的满意度评分如下:
用户编号 | 评分 | 用户编号 | 评分 | 用户编号 | 评分 | 用户编号 | 评分 | |||
1 2 3 4 5 6 7 8 9 10 | 78 73 81 92 95 85 79 84 63 86 | 11 12 13 14 15 16 17 18 19 20 | 88 86 95 76 97 78 88 82 76 89 | 21 22 23 24 25 26 27 28 29 30 | 79 83 72 74 91 66 80 83 74 82 | 31 32 33 34 35 36 37 38 39 40 | 93 78 75 81 84 77 81 76 85 89 |
用系统抽样法从40名用户中抽取容量为10的样本,且在第一分段里随机抽到的评分数据为92.
(1)请你列出抽到的10个样本的评分数据;
(2)计算所抽到的10个样本的均值和方差;
(3)在(2)条件下,若用户的满意度评分在之间,则满意度等级为“级”。试应用样本估计总体的思想,根据所抽到的10个样本,估计该地区满意度等级为“级”的用户所占的百分比是多少?
(参考数据:)