题目内容
【题目】如图所示,在三棱锥中,,,,点为中点.
(1)求证:平面平面;
(2)若点为中点,求平面与平面所成锐二面角的余弦值.
【答案】(1)答案见解析.(2)
【解析】
(1)通过证明平面,证得,证得,由此证得平面,进而证得平面平面.
(2)建立空间直角坐标系,利用平面和平面的法向量,计算出平面与平面所成锐二面角的余弦值.
(1)因为,所以平面,
因为平面,所以.
因为,点为中点,所以.
因为,所以平面.
因为平面,所以平面平面.
(2)以点为坐标原点,直线分别为轴,轴,过点与平面垂直的直线为轴,建立空间直角坐标系,则,,,,,,
,,,,
设平面的一个法向量,则即
取,则,,所以,
设平面的一个法向量,则即
取,则,,所以,
设平面与平面所成锐二面角为,
则.
所以平面与平面所成锐二面角的余弦值为.
练习册系列答案
相关题目