ÌâÄ¿ÄÚÈÝ
2£®Èçͼ£¬ÒÑÖªF1¡¢F2·Ö±ðÊÇÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã£¬¶¥µãBµÄ×ø±êÊÇ£¨0£¬b£©£¬Á¬½ÓBF2²¢ÑÓ³¤½»ÍÖÔ²ÓÚµãM£¬µãM¹ØÓÚxÖáµÄ¶Ô³ÆµãΪN£¬Á¬½ÓF1¡¢N£®£¨I£©ÈôµãNµÄ×ø±êΪ£¨$\frac{8}{3}$£¬$\frac{2}{3}$£©£¬ÇÒBF2=2$\sqrt{2}$£¬ÇóÍÖÔ²µÄ·½³Ì£»
£¨¢ò£©ÈôF1N¡ÍMB£¬ÇóÍÖÔ²ÀëÐÄÂÊeµÄÖµ£®
·ÖÎö £¨¢ñ£©¸ù¾ÝÍÖÔ²µÄ¶¨Ò壬½¨Á¢·½³Ì¹Øϵ¼´¿ÉÇó³öa£¬bµÄÖµ£¬¼´¿ÉµÃµ½ÍÖÔ²·½³Ì£»
£¨¢ò£©Çó³öCµÄ×ø±ê£¬ÀûÓÃF1C¡ÍAB½¨Á¢Ð±ÂÊÖ®¼äµÄ¹Øϵ£¬½â·½³Ì¼´¿ÉÇó³öeµÄÖµ£®
½â´ð ½â£º£¨I£©¡ßNµÄ×ø±êΪ£¨$\frac{8}{3}$£¬$\frac{2}{3}$£©£¬
¡à$\frac{\frac{64}{9}}{{a}^{2}}$+$\frac{\frac{4}{9}}{{b}^{2}}$=1£¬¼´$\frac{64}{{a}^{2}}$+$\frac{4}{{b}^{2}}$=9£¬
¡ßBF22=b2+c2=a2£¬
¡àa2=£¨2$\sqrt{2}$£©2=8£¬¼´b2=4£¬
ÔòÍÖÔ²µÄ·½³ÌΪ$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{4}$=1£»
£¨¢ò£©ÉèF1£¨-c£¬0£©£¬F2£¨c£¬0£©£¬
¡ßB£¨0£¬b£©£¬
¡àÖ±ÏßBF2£ºy=-$\frac{b}{c}$x+b£¬
´úÈëÍÖÔ²·½³Ì$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÃ£¨$\frac{1}{{a}^{2}}$+$\frac{1}{{c}^{2}}$£©x2-$\frac{2}{c}$x=0£¬
½âµÃx=0£¬»òx=$\frac{2{a}^{2}c}{{a}^{2}+{c}^{2}}$£¬
¡ßM£¨$\frac{2{a}^{2}c}{{a}^{2}+{c}^{2}}$£¬$\frac{b£¨{c}^{2}-{a}^{2}£©}{{a}^{2}+{c}^{2}}$£©£¬ÇÒM£¬N¹ØÓÚxÖá¶Ô³Æ£¬
¡àN£¨$\frac{2{a}^{2}c}{{a}^{2}+{c}^{2}}$£¬-$\frac{b£¨{c}^{2}-{a}^{2}£©}{{a}^{2}+{c}^{2}}$£©£¬
Ôò${k}_{{F}_{1}N}$=-$\frac{\frac{b£¨{c}^{2}-{a}^{2}£©}{{a}^{2}+{c}^{2}}}{\frac{2{a}^{2}c}{{a}^{2}+{c}^{2}}+c}$=$\frac{{a}^{2}b-b{c}^{2}}{3{a}^{2}c+{c}^{3}}$£¬
¡ßF1N¡ÍMB£¬
¡à$\frac{{a}^{2}b-b{c}^{2}}{3{a}^{2}c+{c}^{3}}$•£¨-$\frac{b}{c}$£©=-1£¬
ÓÉb2=a2-c2µÃ$\frac{{c}^{2}}{{a}^{2}}$=$\frac{1}{5}$£¬
¼´e=$\frac{c}{a}$=$\frac{\sqrt{5}}{5}$£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éԲ׶ÇúÏßµÄ×ÛºÏÎÊÌ⣬ҪÇóÊìÁ·ÕÆÎÕÍÖÔ²·½³ÌµÄÇó·¨ÒÔ¼°Ö±Ïß´¹Ö±ºÍбÂÊÖ®¼äµÄ¹Øϵ£¬ÔËËãÁ¿½Ï´ó£®
A£® | 0 | B£® | 1 | C£® | 1»ò4 | D£® | ÎÞ·¨È·¶¨ |
A£® | y-3=2£¨x-2£© | B£® | y+3=2£¨x-2£© | C£® | y-2=k£¨x+3£© | D£® | y-2=2£¨x-3£© |
A£® | 55 | B£® | 62 | C£® | 65 | D£® | 72 |
A£® | µÚÒ»ÏóÏÞ | B£® | µÚ¶þÏóÏÞ | C£® | µÚÈýÏóÏÞ | D£® | µÚËÄÏóÏÞ |