ÌâÄ¿ÄÚÈÝ

2£®Èçͼ£¬ÒÑÖªF1¡¢F2·Ö±ðÊÇÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã£¬¶¥µãBµÄ×ø±êÊÇ£¨0£¬b£©£¬Á¬½ÓBF2²¢ÑÓ³¤½»ÍÖÔ²ÓÚµãM£¬µãM¹ØÓÚxÖáµÄ¶Ô³ÆµãΪN£¬Á¬½ÓF1¡¢N£®
£¨I£©ÈôµãNµÄ×ø±êΪ£¨$\frac{8}{3}$£¬$\frac{2}{3}$£©£¬ÇÒBF2=2$\sqrt{2}$£¬ÇóÍÖÔ²µÄ·½³Ì£»
£¨¢ò£©ÈôF1N¡ÍMB£¬ÇóÍÖÔ²ÀëÐÄÂÊeµÄÖµ£®

·ÖÎö £¨¢ñ£©¸ù¾ÝÍÖÔ²µÄ¶¨Ò壬½¨Á¢·½³Ì¹Øϵ¼´¿ÉÇó³öa£¬bµÄÖµ£¬¼´¿ÉµÃµ½ÍÖÔ²·½³Ì£»
£¨¢ò£©Çó³öCµÄ×ø±ê£¬ÀûÓÃF1C¡ÍAB½¨Á¢Ð±ÂÊÖ®¼äµÄ¹Øϵ£¬½â·½³Ì¼´¿ÉÇó³öeµÄÖµ£®

½â´ð ½â£º£¨I£©¡ßNµÄ×ø±êΪ£¨$\frac{8}{3}$£¬$\frac{2}{3}$£©£¬
¡à$\frac{\frac{64}{9}}{{a}^{2}}$+$\frac{\frac{4}{9}}{{b}^{2}}$=1£¬¼´$\frac{64}{{a}^{2}}$+$\frac{4}{{b}^{2}}$=9£¬
¡ßBF22=b2+c2=a2£¬
¡àa2=£¨2$\sqrt{2}$£©2=8£¬¼´b2=4£¬
ÔòÍÖÔ²µÄ·½³ÌΪ$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{4}$=1£»
£¨¢ò£©ÉèF1£¨-c£¬0£©£¬F2£¨c£¬0£©£¬
¡ßB£¨0£¬b£©£¬
¡àÖ±ÏßBF2£ºy=-$\frac{b}{c}$x+b£¬
´úÈëÍÖÔ²·½³Ì$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÃ£¨$\frac{1}{{a}^{2}}$+$\frac{1}{{c}^{2}}$£©x2-$\frac{2}{c}$x=0£¬
½âµÃx=0£¬»òx=$\frac{2{a}^{2}c}{{a}^{2}+{c}^{2}}$£¬
¡ßM£¨$\frac{2{a}^{2}c}{{a}^{2}+{c}^{2}}$£¬$\frac{b£¨{c}^{2}-{a}^{2}£©}{{a}^{2}+{c}^{2}}$£©£¬ÇÒM£¬N¹ØÓÚxÖá¶Ô³Æ£¬
¡àN£¨$\frac{2{a}^{2}c}{{a}^{2}+{c}^{2}}$£¬-$\frac{b£¨{c}^{2}-{a}^{2}£©}{{a}^{2}+{c}^{2}}$£©£¬
Ôò${k}_{{F}_{1}N}$=-$\frac{\frac{b£¨{c}^{2}-{a}^{2}£©}{{a}^{2}+{c}^{2}}}{\frac{2{a}^{2}c}{{a}^{2}+{c}^{2}}+c}$=$\frac{{a}^{2}b-b{c}^{2}}{3{a}^{2}c+{c}^{3}}$£¬
¡ßF1N¡ÍMB£¬
¡à$\frac{{a}^{2}b-b{c}^{2}}{3{a}^{2}c+{c}^{3}}$•£¨-$\frac{b}{c}$£©=-1£¬
ÓÉb2=a2-c2µÃ$\frac{{c}^{2}}{{a}^{2}}$=$\frac{1}{5}$£¬
¼´e=$\frac{c}{a}$=$\frac{\sqrt{5}}{5}$£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éԲ׶ÇúÏßµÄ×ÛºÏÎÊÌ⣬ҪÇóÊìÁ·ÕÆÎÕÍÖÔ²·½³ÌµÄÇó·¨ÒÔ¼°Ö±Ïß´¹Ö±ºÍбÂÊÖ®¼äµÄ¹Øϵ£¬ÔËËãÁ¿½Ï´ó£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø