题目内容
【题目】变换T1是逆时针旋转角的旋转变换,对应的变换矩阵是M1;变换T2对应的变换矩阵是M2=.
(1)点P(2,1)经过变换T1得到点P',求P'的坐标;
(2)求曲线y=x2先经过变换T1,再经过变换T2所得曲线的方程.
【答案】(1)P'(-1,2).(2)y-x=y2.
【解析】
试题(1)先写出旋转矩阵M1=,再利用矩阵运算得到点P'的坐标是P'(-1,2).(2)先按序确定矩阵变换M=M2M1=,再根据相关点法求曲线方程:即先求出对应点之间关系,再代入已知曲线方程,化简得y-x=y2.
试题解析:解:(1)M1=,
M1=.所以点P(2,1)在T1作用下的点P'的坐标是P'(-1,2).
(2)M=M2M1=,
设是变换后图象上任一点,与之对应的变换前的点是,
则M=,也就是即
所以,所求曲线的方程是y-x=y2.
练习册系列答案
相关题目
【题目】微信红包是一款可以实现收发红包、查收记录和提现的手机应用.某网络运营商对甲、乙两个品牌各5种型号的手机在相同环境下抢到的红包个数进行统计,得到如表数据:
手机品牌型号 | |||||
甲品牌(个 | 4 | 3 | 8 | 6 | 12 |
乙品牌(个 | 5 | 7 | 9 | 4 | 3 |
手机品牌红包个数 | 优 | 非优 | 合计 |
乙品牌(个 | |||
合计 |
(1)如果抢到红包个数超过5个的手机型号为“优”,否则“非优”,请完成上述列联表,据此判断是否有的把握认为抢到的红包个数与手机品牌有关?
(2)如果不考虑其它因素,要从甲品牌的5种型号中选出3种型号的手机进行大规模宣传销售.以表示选中的手机型号中抢到的红包超过5个的型号种数,求随机变量的分布列及数学期望.
下面临界值表供参考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | <>2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参考公式:,其中.